AI說書 - 從0開始 - 353 | SRL 視覺化

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


視覺化 Semantic Role Labeling (SRL) 語義角色標註可以加速對句子的理解,以句子「Marvin walked in the park」為例,其視覺化如下:

raw-image

當中角色為:

  • Verb:句子的謂語 (V)
  • Argument:句子的一個參數,名為 ARG0
  • Modifier:句子的修飾語,在本例中為位置 (ARGM-LOC),它可以是副詞、形容詞或任何修飾謂語意義的東西


我們將用 ChatGPT 之 GPT-4 來執行 SRL 實驗,其特色為:

  • 它是無語法的,這意味著它根本不依賴語法樹或規則,這種方法是從經典人工智慧到生成模型的典範轉移,產生模型偵測序列中的統計模式,但完全不學習規則,這些規則是透過統計訓練隱含的,而不是明確的
  • 響應不是預先設計的,並且保持隨機性,這意味著我們將得到一個最可靠的(就像任何人工智慧模型一樣)輸出,但不是每次都得到相同的逐字輸出,這種隨機的行為使得最近的 LLM 變得非常像人類
avatar-img
209會員
527內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Semantic Role Labeling (SRL) 語義角色標註對人類和機器來說都同樣困難,然而,Transformers 模型已經將我們帶到了超越人類基準的顛覆
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 語義角色標注 (SRL) 提供了每個詞在句子中角色的增強訊息提取,這些提取的訊息可以改善翻譯、摘要等自然語言處理任務 (NLP),一個能理解詞語語義角色的模型將提供更高
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將使用搭載 GPT-4 的 ChatGPT Plus 來運行從簡單到複雜的範例,接著,我們會安裝 OpenAI 並向 GPT-4 解釋我們對模型的期望,我們會在 G
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 近幾年來,Transformer 模型的進展超過了過去一代的自然語言處理 (NLP) 發展,以往的 NLP 模型會先訓練理解語言的基本語法,再進行語義角色標註 (SRL
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Semantic Role Labeling (SRL) 語義角色標註對人類和機器來說都同樣困難,然而,Transformers 模型已經將我們帶到了超越人類基準的顛覆
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 語義角色標注 (SRL) 提供了每個詞在句子中角色的增強訊息提取,這些提取的訊息可以改善翻譯、摘要等自然語言處理任務 (NLP),一個能理解詞語語義角色的模型將提供更高
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將使用搭載 GPT-4 的 ChatGPT Plus 來運行從簡單到複雜的範例,接著,我們會安裝 OpenAI 並向 GPT-4 解釋我們對模型的期望,我們會在 G
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 近幾年來,Transformer 模型的進展超過了過去一代的自然語言處理 (NLP) 發展,以往的 NLP 模型會先訓練理解語言的基本語法,再進行語義角色標註 (SRL
你可能也想看
Google News 追蹤
Thumbnail
川普2.0的關稅與貿易政策,表面看似反覆無常,實則圍繞著幾個核心目標:扭轉貿易不公、推動美國再工業化、確保戰略自主,以及貫徹「美國優先」原則。本文深入剖析其背後的一致性邏輯、長期戰略意義,以及對全球產業鏈的影響,並探討不同產業的贏家與輸家。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 37 到 AI說書 - 從0開始 - 70 ,我們完成書籍:Transformers for Natural Language Proc
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法
Thumbnail
川普2.0的關稅與貿易政策,表面看似反覆無常,實則圍繞著幾個核心目標:扭轉貿易不公、推動美國再工業化、確保戰略自主,以及貫徹「美國優先」原則。本文深入剖析其背後的一致性邏輯、長期戰略意義,以及對全球產業鏈的影響,並探討不同產業的贏家與輸家。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 37 到 AI說書 - 從0開始 - 70 ,我們完成書籍:Transformers for Natural Language Proc
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法