Rock-a-bye Baby, on the tree top.
搖啊搖,寶寶在樹上搖。
When the winds blows, the cradle will rock,
風吹過來,搖籃跟著搖。
When the bough breaks, the cradle will fall,
小心別太用力搖,
Down will come baby, cradle and all.
不然寶寶跟著搖籃一起往下掉。
—— 《Rock-a-bye Baby》
T細胞屬於淋巴細胞一種,除了直接攻擊異常細胞以外,也在免疫系統中扮演者輔助與調節的角色。T細胞的T來自胸腺(thymus)的t,並且在胸腺中分化為CD4+ T細胞與CD8+ T細胞。受到細胞激素的調控,CD4+ T細胞可在不同的環境下分化為不同種類,例如Th1、Th2、Th17,與Treg細胞(調節性T細胞),並透過不同細胞激素的製造而進一步產生不同的作用。在IL-12或IL‑4等細胞激素的作用下,CD4+ T細胞會分別分化為Th1或Th2細胞,並分別透過IFNγ或IL‑4、IL-5、IL-13等細胞激素的製造,在身體面對感染時表現出對於不同病菌的抵抗力。此外,在IL-6、IL-21、IL-23,與TGF-β等細胞激素的作用下,CD4+ T細胞則可分化為Th17細胞,而在IL-2與TGF-β等細胞激素的作用下,CD4+ T細胞則會分化為Treg細胞。Th17與Treg細胞在免疫系統可說是扮演著相反的角色。由Th17細胞所產生的IL-17與IL-22等細胞激素會導致發炎與自體免疫現象的產生,而Treg細胞則具有壓抑這些免疫反應的作用。一旦Th17與Treg細胞之間出現失衡而過度傾向Th17時,便有可能導致自體免疫疾病產生,並且和動脈硬化心血管疾病(atherosclerotic cardiovascular disease,ASCVD)的發生有關。相反地,在類風濕性關節炎患者,抑制細胞激素IL-6作用有助於促進Treg細胞的分化、減少Th17細胞的數量,並且降低關節炎活動度。另外,Guggino等人的研究報告指出,對於早期類風濕性關節炎患者而言,類固醇與methotrexate的使用或許也有助於改善Th17與Treg細胞之間的平衡。
除了來自於細胞激素的作用之外,當具有環境感測作用的芳香烴受體(aryl hydrocarbon receptor,AHR)與雷帕黴素機能靶點(mechanistic target of rapamycin,mTOR)受到活化時可促進Th17細胞的產生,而在缺氧環境下所產生的缺氧誘導因子1α(hypoxia-inducible factor 1α,HIF1α)則會促進Th17細胞的分化同時減少Treg細胞的產生。相反的,具有mTOR抑制作用的雷帕黴素(rapamycin)則會促進Treg細胞產生,而具有腺苷單磷酸活化蛋白激酶(5'-AMP-activated protein kinase,AMPK)活化作用的metformin則可透過進一步抑制mTOR的訊息傳遞,來抑制Th17細胞分化並且促進Treg細胞產生。Wang等人針對臺灣健保資料庫的分析發現使用metformin的第二型糖尿病患者發生乾燥症的風險比未使用metformin的患者低,而Naffaa等人在以色列的世代研究報告也認為metformin的使用或許與類風濕性關節炎的風險降低有關。另外,pioglitazone也被發現可透過腺苷單磷酸活化蛋白激酶的作用具有抑制Th17細胞分化並且促進Treg細胞產生的作用。雖然Hsieh等人針對臺灣健保資料庫的分析並未發現pioglitazone的使用能夠降低類風濕性關節炎的發生風險,但Ormseth等人的隨機雙盲對照研究報告卻指出,對於類風濕性關節炎患者而言,pioglitazone的使用或許有助於降低疾病活動度和C反應蛋白濃度。Marder等人則進一步發現,類風濕性關節炎患者使用pioglitazone或許還能夠同時降低脈波傳導速率(pulse wave velocity,PWV),暗示著吡格列酮對於血管的保護作用。
當CD4 + T細胞分化為Treg細胞後,具有免疫調節功能的Treg細胞仍可能在某些環境下轉變成具有發炎作用的T細胞。在體外,使用IL-6、IL-1β和IL-23等細胞激素能夠誘導Treg細胞表現出Th17細胞的特徵,並且產生能夠強化發炎反應的細胞激素IL-17。而在IL-12的作用下,Treg細胞則會表現出Th1的特徵並且產生IFNγ。這種可塑性(plasticity)有利於免疫系統適應不斷變化的身體環境,但在自體免疫疾病,T細胞的可塑性也可能成為問題。Wang等人的研究報告指出,在類風濕性關節炎患者的周邊血液當中可發現更多具有細胞激素IL-17製造功能的Treg細胞;雖然這些Treg細胞在周邊血液中仍可表現出免疫抑制作用,但在關節內高度發炎的環境下中卻會失去其免疫抑制作用。Komatsu等人認為在類風濕性關節炎,不穩定的Treg細胞可能是關節發炎的重要原因:在來自於纖維母細胞樣滑膜細胞(fibroblast-like synoviocytes)的IL-6的作用下,Treg細胞會轉變成Th17細胞;和直接分化自CD4 + T細胞的Th17細胞相比,這些由Treg細胞所轉變而成的Th17細胞更容易導致蝕骨細胞生成(osteoclastogenesis)而產生關節破壞。相反地,細胞激素IL-2則有助於維持Treg細胞的穩定性,並且可能阻礙Th17、Tfh(濾泡輔助性T細胞)等細胞的產生。Zhang等人針對類風濕性關節炎患者所進行的人體試驗顯示,合併使用低劑量IL-2與IL-6抑制劑tocilizumab與能夠快速增加Treg細胞的數量,而Zhang等人則發現合併使用低劑量IL-2與methotrexate比單獨使用methotrexate或許可以帶來更好的關節炎改善效果。
具有抑制膽固醇合成作用的他汀類藥物(statins)同時也能夠減少中間產物類異戊二烯族 (isoprenoids)的產生。有鑑於這些化合物在細胞內訊息傳遞的角色,他汀類藥物被認為可能也具有免疫調節作用。例如,Forero-Peña等人指出,他汀類藥物能夠影響JAK/STAT訊息傳遞、抑制細胞激素IL-6的作用,並且具有促進Treg細胞分化與抑制Th17細胞分化的效果。Mausner-Fainberg等人發現高血脂患者使用simvastatin或pravastatin後其血中Treg細胞會有所增加,而Rodríguez-Perea等人則在健康受試中發現lovastatin或atorvastatin的使用也有同樣反應。事實上,在二十多年前,McCarey等人的隨機雙盲控制研究便發現類風濕性關節炎患者使用atorvastatin有助於進一步改善關節炎活動度、ESR、C反應蛋白濃度,以及腫脹關節數目。Tang等人的研究支持了atorvastatin對於類風濕性關節炎的改善效果,並指出其作用與他汀類藥物對於羥甲基戊二酸單醯輔酶A還原酶 (HMG-CoA reductase)的抑制所導致的Treg細胞增加與功能恢復有關。至於Kitas等人的大型隨機雙盲控制研究雖然發現類風濕性關節炎患者使用atorvastatin有助於降低血中C反應蛋白濃度,在關節炎活動度方面卻未帶來顯著差異,再次顯示出抗風濕病藥物不可取代的角色。另一方面,除了降低全身性發炎反應的潛在作用以外,他汀類藥物或許也能夠透過對於動脈粥狀硬化斑塊的直接作用,例如增加斑塊內Treg細胞的數量與功能,來降低類風濕性關節炎患者缺血性心血管事件的發生率。
除了他汀類降膽固醇藥物以外,維生素D的免疫調節作用也同樣受到關注。Jeffery等人發現,在細胞激素IL-2與活性維生素D(1,25-(OH)2D)的協同作用之下,可促進CD4 + T細胞分化為Treg細胞、增加Treg細胞CTLA-4的表現,同時減少細胞激素IL-17與IFNγ的產生;然而當缺乏活性維生素D的刺激時,細胞激素IL-2的單獨作用並不會影響Treg細胞的分化與細胞激素IL-17與IFNγ的產生,說明了活性維生素D在調節免疫功能方面的重要功能。Penna等人指出,活性維生素D可透過抑制樹突細胞(dendritic cells)分化與成熟,而進一步影響T細胞的活化。Li等人也發現,在維持Treg與Th17的平衡方面,活性維生素D扮演著重要角色。透過在樹突細胞與T細胞的作用,活性維生素D的合成衍生物calcipotriol已成功應用於乾癬的局部治療。透過抽血檢查血清中的25(OH)D濃度可評估維生素D是否足夠,而維生素D缺乏的定義為血清25(OH)D濃度小於20 ng/ml(50 nmol/L)。在紅斑性狼瘡,Amital等人針對歐洲人與以色列人的研究顯示較低的血中25(OH)D濃度與較高的疾病活動度有關,而Mok等人針對中國人的研究同樣發現較低的血中25(OH)D濃度與較高的紅斑性狼瘡疾病活動度有關,特別是血中25(OH)D濃度低於15 ng/ml的患者。Mandal等人指出,較低的血中25(OH)D濃度不僅和較高的紅斑性狼瘡疾病活動度有關,也和較高的血中抗雙股DNA抗體與IFN-α濃度有關。我國國衛院何令君博士等人建議針對維生素D缺乏的紅斑性狼瘡患者,可補充維生素D來維持血中25(OH)D濃度在30-40 ng/ml(75-100 nmol/L)。
當T細胞的翹翹板過度傾向Treg時並不見得完全是好事。以維生素D為例,在較低劑量的使用下,尤其是對於維生素D缺乏的人來說,補充維生素D對於呼吸道感染的預防或許有所幫助。在維生素D缺乏盛行率較高的芬蘭,Laaksi等人發現每天補充400 IU維生素D或許可降低年輕男性因呼吸道感染而請假的風險。Laaksi等人認為,這是因為除了具有免疫調節作用以外,維生素D也會促進抗菌肽(cathelicidin)的表現,有助於強化呼吸道先天免疫(innate immunity)的功能。事實上,Laaksi等人的研究也發現血清25(OH)D濃度小於20 ng/ml (50 nmol/L)與急性呼吸道感染發生率的增加有關。然而過量的維生素D對於免疫力反而可能造成不良影響。在這方面Wall-Gremstrup等人的隨機雙盲對照研究發現足以作為警惕:在單次使用300000 IU後,每天補充1400 IU維生素D 、連續150天的男性不孕症患者反而比使用安慰劑的患者具有顯著更高的呼吸道感染發生率(55% vs. 39%;p = 0.005)。關於補充維生素D對於急性呼吸道感染的預防效果,Jolliffe等人的統合分析呈現出非常有趣的發現。研究指出,只有在每天使用、每日劑量介於400-1000 IU之間、使用時間不超過一年,或是年紀在1歲以上且小於16歲等條件下,維生素D的補充才和急性呼吸道感染發生率的下降有關,雖然從整體來看補充維生素D對於急性呼吸道感染的預防效果相當有限,其風險僅下降8%。根據我國國民健康署所建議,50歲以下的成年人每日飲食維生素D的足夠攝取量為400 IU,而51歲以上的成年人則為600 IU,且成人維生素D的每日攝取量不可超過2000 IU。
參考資料:
1. Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol. 2024;24(7):503-517. doi:10.1038/s41577-024-00994-x
2. Brescia C, Audia S, Pugliano A, et al. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation [published correction appears in APMIS. 2025 Jan;133(1):e13513. doi: 10.1111/apm.13513.]. APMIS. 2024;132(12):1026-1045. doi:10.1111/apm.13378
3. DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol. 2016;16(3):149-163. doi:10.1038/nri.2015.18
4. Zhang W, Liu X, Zhu Y, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol. 2021;51(9):2137-2150. doi:10.1002/eji.202048794
5. Fan H, Zhao J, Mao S, et al. Circulating Th17/Treg as a promising biomarker for patients with rheumatoid arthritis in indicating comorbidity with atherosclerotic cardiovascular disease. Clin Cardiol. 2023;46(12):1519-1529. doi:10.1002/clc.24065
6. Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(8):2499-2503. doi:10.1002/art.34477
7. Kikuchi J, Hashizume M, Kaneko Y, Yoshimoto K, Nishina N, Takeuchi T. Peripheral blood CD4(+)CD25(+)CD127(low) regulatory T cells are significantly increased by tocilizumab treatment in patients with rheumatoid arthritis: increase in regulatory T cells correlates with clinical response. Arthritis Res Ther. 2015;17(1):10. Published 2015 Jan 21. doi:10.1186/s13075-015-0526-4
8. Guggino G, Giardina A, Ferrante A, et al. The in vitro addition of methotrexate and/or methylprednisolone determines peripheral reduction in Th17 and expansion of conventional Treg and of IL-10 producing Th17 lymphocytes in patients with early rheumatoid arthritis. Rheumatol Int. 2015;35(1):171-175. doi:10.1007/s00296-014-3030-2
9. Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106-109. doi:10.1038/nature06881
10. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010;33(3):301-311. doi:10.1016/j.immuni.2010.09.002
11. Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772-784. doi:10.1016/j.cell.2011.07.033
12. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105(12):4743-4748. doi:10.1182/blood-2004-10-3932
13. Sun Y, Tian T, Gao J, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol. 2016;292:58-67. doi:10.1016/j.jneuroim.2016.01.014
14. Duan W, Ding Y, Yu X, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am J Transl Res. 2019;11(4):2393-2402. Published 2019 Apr 15.
15. Wang CY, Lai JN, Liu CH, Hu KC, Sheu KL, Wei JC. Metformin Use Was Associated With Reduced Risk of Incidental Sjögren's Syndrome in Patients With Type 2 Diabetes: A Population-Based Cohort Study. Front Med (Lausanne). 2022;8:796615. Published 2022 Jan 12. doi:10.3389/fmed.2021.796615
16. Naffaa ME, Rosenberg V, Watad A, et al. Adherence to metformin and the onset of rheumatoid arthritis: a population-based cohort study. Scand J Rheumatol. 2020;49(3):173-180. doi:10.1080/03009742.2019.1695928
17. Tian Y, Chen T, Wu Y, et al. Pioglitazone stabilizes atherosclerotic plaque by regulating the Th17/Treg balance in AMPK-dependent mechanisms. Cardiovasc Diabetol. 2017;16(1):140. Published 2017 Oct 30. doi:10.1186/s12933-017-0623-6
18. Tian Y, Chen T, Wu Y, et al. Pioglitazone stabilizes atherosclerotic plaque by regulating the Th17/Treg balance in AMPK-dependent mechanisms. Cardiovasc Diabetol. 2017;16(1):140. Published 2017 Oct 30. doi:10.1186/s12933-017-0623-6
19. Hsieh MS, Hung PS, Hsieh VC, Liao SH, How CK. Association between thiazolidinedione use and rheumatoid arthritis risk in patients with type II diabetes, a population-based, case-control study. Int J Clin Pract. 2021;75(3):e13804. doi:10.1111/ijcp.13804
20. Ormseth MJ, Oeser AM, Cunningham A, et al. Peroxisome proliferator-activated receptor γ agonist effect on rheumatoid arthritis: a randomized controlled trial. Arthritis Res Ther. 2013;15(5):R110. doi:10.1186/ar4290
21. Marder W, Khalatbari S, Myles JD, et al. The peroxisome proliferator activated receptor-γ pioglitazone improves vascular function and decreases disease activity in patients with rheumatoid arthritis. J Am Heart Assoc. 2013;2(6):e000441. Published 2013 Nov 19. doi:10.1161/JAHA.113.000441
22. Qin C, Diaz-Gallo LM, Tang B, et al. Repurposing antidiabetic drugs for rheumatoid arthritis: results from a two-sample Mendelian randomization study. Eur J Epidemiol. 2023;38(7):809-819. doi:10.1007/s10654-023-01000-9
23. Hirahara K, Poholek A, Vahedi G, et al. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol. 2013;131(5):1276-1287. doi:10.1016/j.jaci.2013.03.015
24. Wang T, Sun X, Zhao J, et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2015;74(6):1293-1301. doi:10.1136/annrheumdis-2013-204228
25. Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62-68. doi:10.1038/nm.3432
26. Zhang SX, Chen HR, Wang J, et al. The efficacy and safety of short-term and low-dose IL-2 combined with tocilizumab to treat rheumatoid arthritis. Front Immunol. 2024;15:1359041. Published 2024 Apr 22. doi:10.3389/fimmu.2024.1359041
27. Zhang X, Miao M, Zhang R, et al. Efficacy and safety of low-dose interleukin-2 in combination with methotrexate in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther. 2022;7(1):67. Published 2022 Mar 7. doi:10.1038/s41392-022-00887-2
28. Forero-Peña DA, Gutierrez FR. Statins as modulators of regulatory T-cell biology. Mediators Inflamm. 2013;2013:167086. doi:10.1155/2013/167086
29. Mausner-Fainberg K, Luboshits G, Mor A, et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells. Atherosclerosis. 2008;197(2):829-839. doi:10.1016/j.atherosclerosis.2007.07.031
30. Rodríguez-Perea AL, Montoya CJ, Olek S, Chougnet CA, Velilla PA. Statins increase the frequency of circulating CD4+ FOXP3+ regulatory T cells in healthy individuals. J Immunol Res. 2015;2015:762506. doi:10.1155/2015/762506
31. McCarey DW, McInnes IB, Madhok R, et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet. 2004;363(9426):2015-2021. doi:10.1016/S0140-6736(04)16449-0
32. Tang TT, Song Y, Ding YJ, et al. Atorvastatin upregulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52(5):1023-1032. doi:10.1194/jlr.M010876
33. Kitas GD, Nightingale P, Armitage J, et al. A Multicenter, Randomized, Placebo-Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2019;71(9):1437-1449. doi:10.1002/art.40892
34. Meng X, Zhang K, Li J, et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol Med. 2012;18(1):598-605. Published 2012 May 9. doi:10.2119/molmed.2011.00471
35. Karpouzas G, Ormseth S, Van Riel P, et al. Statin Use Attenuates the Impact of Systemic Inflammation on Ischemic Cardiovascular Risk in Patients with Rheumatoid Arthritis [abstract]. Arthritis Rheumatol. 2023; 75 (suppl 9).
36. Jeffery LE, Burke F, Mura M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009;183(9):5458-5467. doi:10.4049/jimmunol.0803217
37. Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000;164(5):2405-2411. doi:10.4049/jimmunol.164.5.2405
38. Li M, Luo L, Lin C, et al. Vitamin D3 mitigates autoimmune inflammation caused by activation of myeloid dendritic cells in SLE. Exp Dermatol. 2024;33(1):e14926. doi:10.1111/exd.14926
39. Amital H, Szekanecz Z, Szücs G, et al. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D?. Ann Rheum Dis. 2010;69(6):1155-1157. doi:10.1136/ard.2009.120329
40. Mandal M, Tripathy R, Panda AK, et al. Vitamin D levels in Indian systemic lupus erythematosus patients: association with disease activity index and interferon alpha. Arthritis Res Ther. 2014;16(1):R49. Published 2014 Feb 10. doi:10.1186/ar4479
41. Mok CC, Birmingham DJ, Leung HW, Hebert LA, Song H, Rovin BH. Vitamin D levels in Chinese patients with systemic lupus erythematosus: relationship with disease activity, vascular risk factors and atherosclerosis. Rheumatology (Oxford). 2012;51(4):644-652. doi:10.1093/rheumatology/ker212
42. Mok CC, Bro ET, Ho LY, Singh RJ, Jannetto PJ. Serum 25-hydroxyvitamin D3 levels and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Clin Rheumatol. 2018;37(10):2685-2692. doi:10.1007/s10067-018-4204-1
43. Ho LJ, Wu CH, Luo SF, Lai JH. Vitamin D and systemic lupus erythematosus: Causality and association with disease activity and therapeutics. Biochem Pharmacol. 2024;227:116417. doi:10.1016/j.bcp.2024.116417
44. Laaksi I, Ruohola JP, Mattila V, Auvinen A, Ylikomi T, Pihlajamäki H. Vitamin D supplementation for the prevention of acute respiratory tract infection: a randomized, double-blinded trial among young Finnish men. J Infect Dis. 2010;202(5):809-814. doi:10.1086/654881
45. Laaksi A, Kyröläinen H, Pihlajamäki H, Vaara JP, Luukkaala T, Laaksi I. Effects of Vitamin D Supplementation and Baseline Vitamin D Status on Acute Respiratory Infections and Cathelicidin: A Randomized Controlled Trial. Open Forum Infect Dis. 2024;11(9):ofae482. Published 2024 Aug 27. doi:10.1093/ofid/ofae482
46. Wall-Gremstrup G, Holt R, Yahyavi SK, et al. High-dose vitamin D3 supplementation shows no beneficial effects on white blood cell counts, acute phase reactants, or frequency of respiratory infections. Respir Res. 2024;25(1):11. Published 2024 Jan 4. doi:10.1186/s12931-023-02642-9
47. Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276-292. doi:10.1016/S2213-8587(21)00051-6