
付費限定
告別 LLM 幻覺與資訊焦慮:解析檢索式增強生成 (RAG) 的演進(下)
更新於 發佈於 閱讀時間約 11 分鐘

以行動支持創作者!付費即可解鎖
本篇內容共 4217 字、0
則留言,僅發佈於AI學習之旅你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
留言分享你的想法!
TN科技筆記(TechNotes)的沙龍
40會員
143內容數
大家好,我是TN,喜歡分享科技領域相關資訊,希望各位不吝支持與交流!
TN科技筆記(TechNotes)的沙龍的其他內容
2025/07/13
深入了解檢索式增強生成 (RAG) 如何解決大型語言模型 (LLM) 的幻覺與資訊時效性問題。TN科技筆記解析不同RAG方法以及如何選擇最適合的方案,讓你的 AI 更智慧、更可靠!

2025/07/13
深入了解檢索式增強生成 (RAG) 如何解決大型語言模型 (LLM) 的幻覺與資訊時效性問題。TN科技筆記解析不同RAG方法以及如何選擇最適合的方案,讓你的 AI 更智慧、更可靠!

2025/06/07
【公告】114年第一次中級AI 應用規劃師能力鑑定開放查詢成績
今天114年第一次中級AI應用規劃師能力鑑定也提早開放讓考生查詢成績——
成功通過了~
同樣附上本次考試的官方統計資料
自從上次通過iPAS-初級AI應用規劃師能力鑑定之後,TN科技筆記在此感謝 請我喝一杯咖啡 會員們,讓我能夠

2025/06/07
【公告】114年第一次中級AI 應用規劃師能力鑑定開放查詢成績
今天114年第一次中級AI應用規劃師能力鑑定也提早開放讓考生查詢成績——
成功通過了~
同樣附上本次考試的官方統計資料
自從上次通過iPAS-初級AI應用規劃師能力鑑定之後,TN科技筆記在此感謝 請我喝一杯咖啡 會員們,讓我能夠

2025/04/27
隨著大型語言模型(LLM)在推理(Reasoning)任務的表現受到廣泛關注。為了提升模型在推理階段的表現,研究人員提出了「測試時間計算(Test-time Computing)」與「測試時間擴展(Test-time Scaling)」兩個重要概念。本文將說明這兩個概念的定義與區別。

2025/04/27
隨著大型語言模型(LLM)在推理(Reasoning)任務的表現受到廣泛關注。為了提升模型在推理階段的表現,研究人員提出了「測試時間計算(Test-time Computing)」與「測試時間擴展(Test-time Scaling)」兩個重要概念。本文將說明這兩個概念的定義與區別。

#AI 的其他內容
你可能也想看






















2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP

在學習描寫文的過程中,將思維視覺化是一個重要的教學策略。通過使用AI生成圖片功能,教師能夠幫助學生將抽象的描述轉化為具體的圖像。

在學習描寫文的過程中,將思維視覺化是一個重要的教學策略。通過使用AI生成圖片功能,教師能夠幫助學生將抽象的描述轉化為具體的圖像。

這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。

這陣子使用AI模型,還有參考國內外一些喜歡玩語言模型的同好發文,一個很有趣的結論就是,有時候把大型語言模型(尤其ChatGPT)當作一個人來溝通,會得到比較好的結果,這的確是非常反直覺的,也就是說很多時候ChatGPT耍懶不肯工作的時候,你用加油打氣,或是情緒勒索的方法,確實是可以得到比較好的結果。

這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。

這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。