隨著大型語言模型(LLM)在推理(Reasoning)任務的表現受到廣泛關注。為了提升模型在推理階段的表現,研究人員提出了「測試時間計算(Test-time Computing)」與「測試時間擴展(Test-time Scaling)」兩個重要概念。本文將說明這兩個概念的定義與區別。
付費限定
大型語言模型推理:測試時間計算與測試時間擴展的差別
更新於 發佈於 閱讀時間約 5 分鐘
以行動支持創作者!付費即可解鎖
本篇內容共 2263 字、0
則留言,僅發佈於AI學習之旅你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
留言分享你的想法!
TN科技筆記(TechNotes)的沙龍
40會員
143內容數
大家好,我是TN,喜歡分享科技領域相關資訊,希望各位不吝支持與交流!
#AI 的其他內容
你可能也想看






















2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
延續 xxx 提到,既然提到訓練,就表示要有一套衡量基準供大家遵守,有鑑於此,以下繼續介紹幾類衡量方式:
MCC:
首先介紹 True (T) Positive (

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
延續 xxx 提到,既然提到訓練,就表示要有一套衡量基準供大家遵守,有鑑於此,以下繼續介紹幾類衡量方式:
MCC:
首先介紹 True (T) Positive (

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論:
Attention Layer的複雜度是O(n^2 *

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論:
Attention Layer的複雜度是O(n^2 *
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。
Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。
Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。

大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。
這類模型,如GPT-4,
透過其龐大的數據集和複雜的參數設置,
提供了前所未有的語言理解和生成能力。
那麼,究竟是什麼讓這些模型「大」得如此不同呢?

大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。
這類模型,如GPT-4,
透過其龐大的數據集和複雜的參數設置,
提供了前所未有的語言理解和生成能力。
那麼,究竟是什麼讓這些模型「大」得如此不同呢?