上古漢語的邏輯結構 038

更新於 發佈於 閱讀時間約 2 分鐘

1.0 從函數到函算語法


raw-image

1.2 函數概念小史

  • 1.2.1 中譯的來源
  • 1.2.2 一個速度問題
  • 1.2.3 幾何的方法
  • 1.2.4 微積分的記法
  • 1.2.5弦的振動

 

雖然論爭沒有得出任何定論,但對函數概念的演化卻影嚮頗深。

在這次歷時多年的論爭中,函數概念得以擴大而包括兩類函數﹕

(a) 分析式在不同區間分段地界定的函數,譬如

raw-image

(歐拉視之為不連續)36 便毫無懸念地首次被視為一個函數了。

(b) 隨手繪劃的函數 (可能不由任何多個分析式組合所給定)。

當振動弦的論爭在各持己見之中沉寂下來時,公元十八世紀中後期,法國數學家約瑟夫‧路易‧拉格朗日 (Joseph Louis Lagrange) 卻舊事重提,並且抱持歐拉的見解。以算法機靈著稱的拉格朗日從插值曲線 (interpolation curve) 入手,最終目標為導出歐拉的公式﹔期間,他對函數下了一個明確的定義﹕

(FL) 我們稱任一用作計算的表式為一個或幾個量的函數,不論這些量有沒有夾雜其他作為給定及不變值的量,及不論這些量以任何方式記入表式中﹔同時,該函數的量可以接受所有的可能值。因此,就函數而言,我們只考慮當為變元的量,而不用理會夾雜其間的常元。... 在一般情況下,我們在一個變元之前放置字母 F,用來指稱此變元的函數,也就是說,任何數量按某給定的律則取決于此變元,並且隨它一起變動。[Rüthing 1984: 73]

這個定義相當詳細。值得注意的是最後的部份﹕「... 我們在一個變元之前放置字母 F,用來指稱此變元的函數 ... 任何數量按某給定律則取決于此變元,並且隨它一起變動」。

在拉格朗日之前,關心函數概念的數學工作者專注於某量因應另一量的變動,即函數的量因應函數中的變量而變動,(FL) 則明確了量的變動有賴於「某給定的律則」。拉格朗日沒有直截了當地說出來的是,這個「某給定的律則」顯然就是該函數要表達的關係

雖然差那麼一點點沒有說出來,(FL) 實在已將函數的另一個基本特徵提上議程。

__________

36 歐拉聲稱的連續函數和不連續函數與現代的連續函數和不連續函數具有不同的意義,有數學工作者將歐拉的使用意義分別稱為「E-連續函數」和「E-不連續函數」,以茲識別。

待續

avatar-img
7會員
329內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 六 當時研究離散系統的丹尼爾.貝努利 (Daniel Bernoulli﹔約翰•貝努利的兒子) 可能受到一
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 四 在這個背景下,法國物理學家達朗貝爾 (見貼文 32) 是論爭成員中發表振動弦運動的第一人,因此也是將這
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 二 有了萊布尼茲的命名和貝努利的初步界定,函數關係被正式放在桌面上,毫無遮掩地進入了公元十八世紀歐洲數學工作者
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 一 前文提到萊布尼茲與瑞士數學家約翰‧貝努利有過關於「函數」的通訊。現在談一下貝努利。 貝努利關心的其中
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 六 當時研究離散系統的丹尼爾.貝努利 (Daniel Bernoulli﹔約翰•貝努利的兒子) 可能受到一
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 四 在這個背景下,法國物理學家達朗貝爾 (見貼文 32) 是論爭成員中發表振動弦運動的第一人,因此也是將這
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 二 有了萊布尼茲的命名和貝努利的初步界定,函數關係被正式放在桌面上,毫無遮掩地進入了公元十八世紀歐洲數學工作者
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 一 前文提到萊布尼茲與瑞士數學家約翰‧貝努利有過關於「函數」的通訊。現在談一下貝努利。 貝努利關心的其中
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
在易理這個領域來說,始終都有有關於「數」的討論,而在各種理氣分析而言也隱隱的暗示其「數學性」,最顯著的可能是曆法與天文的計算對於易理哲學的影響與內在性。 那這種關係性究竟從何而來,或許可以從近代數學一窺端倪。
並得知根源還有虛數空間理論。
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
在易理這個領域來說,始終都有有關於「數」的討論,而在各種理氣分析而言也隱隱的暗示其「數學性」,最顯著的可能是曆法與天文的計算對於易理哲學的影響與內在性。 那這種關係性究竟從何而來,或許可以從近代數學一窺端倪。
並得知根源還有虛數空間理論。
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾