AI說書 - 從0開始 - 41

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


AI說書 - 從0開始 - 39,我們陳述了 Transformer 的全貌,那 Transformer 的 Encoder 部分長怎樣呢,如下所示:

raw-image


在原始 Transformer 的模型中,此 Encoder Layer 部分重複六次,也就是圖中 N = 6。


每個 Encoder Layer 內包含兩個 Sublayer :

  • Multi-Headed Attention Mechanism
  • Fully Connected Position-Wise Feedforward Network


介紹完圖中的 Sublayer 後,我們將目光轉向綠色方塊:Add & Norm ,當中的 Add 機制稱為 Residual Connection ,目的是確保關鍵輸入訊號不會在傳遞過程中消失,因此綠色方塊的輸出就變成:LayerNormalization(x + Sublayer(x))



avatar-img
177會員
471內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 首先先展示 Transformer 的架構圖: 可以看到架構中不再出現 RNN 、 LSTM 、 CNN 等物件,因為 Recurrence 已被摒棄。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是一門藝術和科學,它精心設計有效的提示,以從人工智慧模型中誘發所需
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是一門藝術和科學,它精心設計有效的提示,以從人工智慧模型中誘發所需
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - Prompt Engineering - 13中,提及Prompt Engine
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 首先先展示 Transformer 的架構圖: 可以看到架構中不再出現 RNN 、 LSTM 、 CNN 等物件,因為 Recurrence 已被摒棄。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 既然要談論 Transformer 的 Attention 機制,我們必須要談論以下主題: Transformer 架構 自注意力機制 編碼與解碼 Embedd
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是一門藝術和科學,它精心設計有效的提示,以從人工智慧模型中誘發所需
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是一門藝術和科學,它精心設計有效的提示,以從人工智慧模型中誘發所需
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - Prompt Engineering - 13中,提及Prompt Engine
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
現代大語言模型建構於Transformer結構。 Transformer結構是源自於2017年著名論文 Attention Is All You Need的深度神經網路結構。 原始的Trasformer是為了機器翻譯發展,當初的任務是將英文翻譯成德文與法文。 Transformer
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888