2024-06-23|閱讀時間 ‧ 約 24 分鐘

AI說書 - 從0開始 - 42

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊:

  • 原始 Transformer 架構中設定 N = 6
  • 因應 N = 6,因此 Multi-Head Attention也重複執行六次,這概念就像我們看一段文章,我們會同時追蹤這文章中多個字之間的關聯,英文原意就是:Explores Different Ways of Associating the Tokens in the Sequence
  • 每個 Encoder Layer 內包含兩個 Sublayer :Multi-Headed Attention Mechanism 與 Fully Connected Position-Wise Feedforward Network
  • 原始 Transformer 架構中設定, Embedding Layer 、 Residual Connection 等 Sublayer 輸出維度均為 dmodel = 512
  • 維度設定一致可以避免運算設備還要做額外資源配置


接著我們來看看 Input Embedding Sublayer 做的是什麼事情,其架構如下:

  • 其將 Input Tokens 轉換為維度為 512 的向量
  • 而將 Input Sequence 轉換為 Input Tokens 的是 Tokenizer,它有很多種方法,如:Byte Pair Encoding 、 Word Piece 、 Sentence Piece 等等,原始 Transformer 使用的是 Byte Pair Encoding
  • 舉一個例子來說明 Tokenizer 做的事情,假如我有一個句子為:「the Transformer is an innovative NLP model !」,那麼經過 Tokenizer 後將得到:'the' 、 'transform' 、 'er'、'is'、'an'、'innovative'、'n'、'l'、'p'、'model'、'!'



分享至
成為作者繼續創作的動力吧!
© 2024 vocus All rights reserved.