付費限定

Nvidia 一夫當關救科技股,黃仁勳說了什麼讓火箭升空?

閱讀時間約 14 分鐘
  • 文內如有投資理財相關經驗、知識、資訊等內容,皆為創作者個人分享行為。
  • 有價證券、指數與衍生性商品之數據資料,僅供輔助說明之用,不代表創作者投資決策之推介及建議。
  • 閱讀同時,請審慎思考自身條件及自我決策,並應有為決策負責之事前認知。
  • 方格子希望您能從這些分享內容汲取投資養份,養成獨立思考的能力、判斷、行動,成就最適合您的投資理財模式。
比扯鈴還扯的 Nvidia,因為給出了爆炸性的財測 Q2營收,預計年增64%至創紀錄的110億,遠超預期的71億,盤後大暴漲超過24%。之前覺得Nvidia可能會遭遇現實營收轉換的Reality check,但現實其實出乎意料的強大比做夢還強。
NVDA Q1的財報重點
  • 營收:-13%至72億 > 預期 65.2億
  • EPS:$1.09 > 預期 0.92
  • 數據中心營收:+14%至 42.8億 > 預期 39億
  • 遊戲部門營收:-38%至 22.4億 > 預期 19.8億
  • 汽車部門營收:+114%至2.9億
  • 23Q2營收財測:110億 > 預期 71.5 億
  • 23Q2毛利率:70% > Q1 的66.8%
NVIDIA創始人兼CEO黃仁勳表示,電腦產業正經歷兩個同時的轉變:加速運算和生成AI。全球價值一兆美元的已安裝數據中心基礎設施,將從一般目的轉變為加速運算,因為公司競相將生成AI應用到每一個產品、服務和業務流程中。
如果用過去5年的Q2營收規模,你就可以看出Nvidia對於下一季Q2的營收成長是另一個等級的提升,也超出了市場預期71億很多,因為大部分的半導體公司仍遭遇PC行業逆風,即便數據中心的收入也較平緩。
例如AMD之前給出的Q2財測是年減-20%,和Nvidia給出的預期差距非常巨大。當然Nvidia在AI運算的地位與產品的需求,是無庸置疑的AI領頭羊。
就連在財報電話會議中,Nvidia提到「AI」的次數都遠比其他科技巨頭多得多,這次Q1財報更是講了幾乎上百次 AI,比微軟還多了一倍。這邊整理給大家黃仁勳講了哪些重點。

Nvidia的3種主要的AI客戶:

  • 雲端服務提供商(CSP):CSP 競相部署我們的旗艦 Hopper 和 Ampere 架構 GPU,以滿足企業和消費者 AI 應用程序對訓練和推理的興趣激增。多個 CSP 宣佈在其平台上提供 H100,包括在 Microsoft Azure、Google Cloud 和 Oracle Cloud Infrastructure以及AWS也即將推出
  • 消費者互聯網公司:採用生成式AI和基於深度學習的推薦系統,推動強勁增長。例如,Meta 現在為其 AI 生產和研究團隊部署了由 H100 驅動的 Grand Teton AI 超級計算機。
  • 企業 Enterprise:企業對AI和加速運算的需求旺盛。我們看到了汽車、金融服務、醫療保健和電信等垂直領域的發展勢頭,AI和加速計算正迅速成為客戶創新路線圖和競爭定位中不可或缺的一部分。例如,Bloomberg 宣布擁有一個 500 億參數模型 BloombergGPT,以幫助處理金融自然語言處理任務,例如情感分析、命名實體識別、新聞分類和問答。

如同 iPhone 時刻 的 ChatGPT 時刻來臨

如同 iPhone Moment,在ChatGPT Moment來臨時,所有技術都匯集在一起,讓人們認識到它可以成為一種驚人的產品,擁有什麼能力。NVIDIA在ChatGPT時刻已全面生產Ampere和Hopper。
我們大量生產超級計算機,這些都是巨大的系統,我們大量生產它們。它包括GPU,但在我們的GPU上,系統板有35000個其他組件。並且還有網絡,和光纖,還有收發器和NIC,Smart NIC,交換機,所有這些都必須組合在一起,我們才能建立一個數據中心。所以當那ChatGPT時刻來臨時,我們已經全面生產。我們必須在下半年大幅增加我們的採購

關於強勁的需求對於競爭格局有沒有影響,會在定製ASIC 、其他GPU解決方案引發更多競爭嗎?

關於競爭,Nvidia 面臨來自各方的競爭。有非常多資金的公司和創新的初創公司,數不勝數,遍布全球。我們面對來自現有半導體公司的競爭。我們也面對來自內部項目的CSP的競爭。我們一直都在注意競爭,並且一直都在面臨競爭。但是NVIDIA的核心價值主張是,我們是最低成本的解決方案。我們是最低TCO(Total Cost Ownership)的解決方案。
以下是幾個要點:
  1. 加速計算的挑戰:我們需要優化整個技術堆棧,包括s oftware、libraries、algorithms,並將它們整合並優化於架構中,不僅僅是一個芯片,而是整個數據中心的架構。這個過程中的工程學和分布式計算工作相當龐大。
  2. 生成式AI的規模問題:生成式 AI 是一個大規模問題,是一個數據中心規模的問題。換句話說,電腦就是數據中心,數據中心就是電腦,這在以前從未發生過。在這種情況下,你需要理解並運營整個系統,包括網路操作系統、分布式計算引擎、網路設備的架構、交換機和計算系統、運算布局等。
  3. 利用率和多樣性:我們能夠加速的應用程式的類型和數量多,這使得我們的利用率非常高。如果你只能做一件事,並且非常快,那麼你的數據中心基本上是閒置的,並且很難擴展。我們能夠加速許多堆棧,使我們的利用率非常高。
  4. 數據中心的專業知識:我們自己建立了五個數據中心,並且我們幫助全世界的公司建立數據中心,並將我們的架構整合到全世界的雲端中。我們的產品從交付到部署的時間非常短。如果你對此不熟練,建立一個超級電腦可能需要數月。一些世界上最大的超級電腦在一年半前就已經安裝好了,現在才開始運行,所以從交付到營運可能需要大約一年的時間。
  5. 我們的交付到運營時間只需幾週。我們已經將數據中心和超級電腦轉變成了產品,Nvidia團隊在這方面的專業知識是令人難以置信的。所以,Nvidia 的價值主張就是,所有這些技術,最終都會轉化為基礎設施,Nvidia 提供最高的吞吐量和最低可能的成本。

推理(Inference)是否比訓練(Training)要大得多?

黃仁勳的回答是,訓練永遠不會結束。每次部署時,都會收集新的數據,並且會使用新的數據進行訓練。所以,訓練不會結束。大語言模型、向量數據庫的建立,和處理以及所有收集到的結構化或非結構化數據的向量化也都不會結束。
無論是建立推薦系統、大語言模型還是向量數據庫,這可能是未來計算的三個主要應用,也是三個核心引擎。他們總是在運行。
越來越多的公司會意識到他們擁有一個智能工廠,這個工廠主要致力於訓練、處理數據、向量化數據以及學習數據的表示等工作。

生成式AI API 大串聯的時代

而推理的部分,則是透過可以連接到各種應用的開放API,或者是整合到工作流程中的API來實現。公司內部會有數百種API,一些是他們自己建立的,一些可能來自於我們在AI Foundations中合作的公司,如ServiceNow和Adobe。
這些公司將創建大量的生成 AI API,其他公司可以將其連接到自己的工作流程中或作為應用程序使用。當然,還會有大量的互聯網服務公司。
因此,我們可以看到,AI工廠領域的增長非常顯著,而且與此同時,一個以前不存在的市場——透過API進行AI推理的市場——現在正在以每週都在增長的速度成長。
最簡單的想法是,世界上有價值1兆美元的數據中心設施,它們以前100%都是使用中央處理單元(CPU)。然而,未來我們知道,現在已經有足夠多的地方聽到了摩爾定律的結束。
現在已經有很多地方看到,你不能合理地用通用計算來擴展數據中心,而加速計算是前進的道路,而且現在已經有了一個殺手級的應用,那就是生成式 AI。
因此,最簡單的想法是,你的1兆美元的基礎設施,每個季度的資本支出預算都會大量投入到生成 AI 和加速計算基礎設施中,從資本支出預算中使用的GPU數量,到連接所有這些部分的加速交換器和加速網路晶片。
最簡單的想法是,在接下來的四五年,甚至十年內,這1兆美元的大部分,以及調整後考慮到數據中心的所有增長,都將主要是生成 AI。這可能是最簡單的思考方式,這包括訓練和推理。

LLM大型語言模型確實是一個很大的機會,但雲端客戶如何將每次查詢的成本大幅降低?

無論你從哪裡開始,都可以先建立一個大型語言模型,然後使用這個大型語言模型,你可以將它們提煉成中等大小、小型和微型的模型。
這些微型的模型可以放在你的手機和PC等等,它們都有很好的功能--這似乎很令人驚訝,但它們都能做到同樣的事情。
但顯然,大型語言模型的通用性最為全面,它可以做更多令人驚嘆的事情。大型模型會教導較小的模型如何成為良好的AI,所以,你用大型模型來生成提示,以便調整較小的模型,依此類推。所以你要先建立很大的模型,然後也要訓練一大堆較小的模型。
另一個重要的事情是,這些都是模型,但它們最終都連接到應用程式。而應用程式可以有影像輸入/輸出、影片輸出/輸入、文字輸出/輸入,未來可能會有3D圖形輸出。
所以,輸入和輸出需要大量的預處理和後處理。預處理和後處理不能被忽視。模型本身只佔推理總處理量的大約25%,其餘部分是預處理和後處理、安全性、解碼等等。
所以,我認為推理的多模態性,推理的多元性,這將在雲端、內部完成,也將在多雲中完成,這就是為什麼我們在所有雲中都有AI企業的原因。這將在內部完成,這就是為什麼我們和Dell有一個很好的合作關係,我們前幾天剛剛宣布了一個名為Helix的項目。這將被整合到第三方服務中,這也是為什麼我們和ServiceNow以及Adobe有良好合作關係的原因,因為他們將創建一系列的生成式AI功能。
因此,這所有的多樣性,生成式AI的廣度如此之大,你需要有一些我剛剛描述的非常基本的能力,才能真正解決其所有的問題。

結語

電腦產業正在經歷兩個同時的轉變,加速計算和生成式AI。CPU規模化已經放緩,然而計算需求強勁,現在又有生成式AI的超級加持。
加速計算,NVIDIA首創的全棧和數據中心規模的方法,是最佳的前進路徑。全球數據中心基礎設施已投入1兆美元,基於上一個時代的通用計算方法。公司現在正在競相部署加速計算,以迎接生成式AI時代。在未來的十年裡,世界上大多數的數據中心將被加速。
我們正在大幅增加供應以滿足激增的需求。大型語言模型可以學習以多種形式編碼的信息。在大型語言模型的引導下,生成式AI模型可以生成驚人的內容,並且有模型來微調,設置護欄,根據指導原則進行對齊,並確定事實,生成式AI正在從實驗室走向工業應用。
在我們與雲和互聯網服務提供商的規模擴大的同時,我們也正在為全球最大的企業構建平台。無論是在我們的CSP合作夥伴之一,還是在Dell Helix的on-prem,無論是在ServiceNow和Adobe等領先的企業平台,還是在NVIDIA AI Foundations的定製,我們都可以幫助企業利用他們的領域專業知識和數據,安全且安全地利用生成式AI。
我們將在未來幾個季度中推出一系列產品,包括H100,我們的Grace和Grace Hopper超級芯片,以及我們的BlueField-3和Spectrum 4網絡平台。它們都在生產中。他們將幫助實現數據中心規模的計算,同時也是節能和可持續計算。下週在COMPUTEX上加入我們,我們將向您展示下一步是什麼。

Nvidia的驚人估值是瘋狂還是合理?

以行動支持創作者!付費即可解鎖
本篇內容共 5616 字、0 則留言,僅發佈於IEO 國際財經科技前沿觀察你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
每天閱讀大量資訊的 IEObserve 國際經濟觀察,為你介紹最新的國際財經、政治與科技趨勢潮流和商業分析,從資本市場國際股市切入,介紹與分析影響世界的巨無霸公司,以及哪些成長飛速的新創與高成長公司,正在悄悄改變世界。適合想獲取最新世界不同產業趨勢與經濟變化相關資訊的好學者。
留言0
查看全部
發表第一個留言支持創作者!
巴菲特的波克夏在Q1銀行危機時期的最大動作,是加碼最大持股蘋果AAPL,以及美國銀行BAC各2%,只是因為股價AAPL漲而BAC跌,使得AAPL在他的投資組合佔比達到了更高46.44%。 另一大動作則是減碼18%的能源股雪佛龍 CVX,價值超過49億。但也持續加
Shopify公佈了Q1的業績,營收年增25%至15億優於預期的14.3億,EPS $0.05 超預期的 -0.178 轉虧為盈。更重要的是Shopify宣布將物流業務出售給物流技術公司Flexport,專注於核心電商平台業務,並在十個月內第二次大裁員,這次裁了20%約兩千多人。 出售物流業務標誌回
FB母公司Meta公佈的Q1財報,營收重回年增3%至286億,優於預期276億。EPS $2.2也優於預期的 $2.03。營業利潤率從20%回到了25%。 預計Q2的營收在295-320億,也高於預期的295億。全年的總支出會從860-920億降到860-900億。資本支出則是持平在300-330億
Amazon,微軟和Google都發布了Q1的財報結果,兩大AI的領頭羊巨頭公司給出了怎樣的願景
Tesla 開獎大降價後對營收和毛利的影響,總體的營收233億符合市場預期,營收年增率下滑至24%,電動車交付量年增40%至42.3萬,營收年增率則下降至18%。Q1產量比交付多1.8萬輛,電動車庫存週轉天數進一步提升至15天。
Netflix 公布Q1營收年增3.7%至81.6億符合預期的81.7億,EPS $2.88 則高於預期的2.82。Operating Margin恢復至21%優於預期的19.9%。Q1新增175萬用戶低於華爾街預期的241萬。
巴菲特的波克夏在Q1銀行危機時期的最大動作,是加碼最大持股蘋果AAPL,以及美國銀行BAC各2%,只是因為股價AAPL漲而BAC跌,使得AAPL在他的投資組合佔比達到了更高46.44%。 另一大動作則是減碼18%的能源股雪佛龍 CVX,價值超過49億。但也持續加
Shopify公佈了Q1的業績,營收年增25%至15億優於預期的14.3億,EPS $0.05 超預期的 -0.178 轉虧為盈。更重要的是Shopify宣布將物流業務出售給物流技術公司Flexport,專注於核心電商平台業務,並在十個月內第二次大裁員,這次裁了20%約兩千多人。 出售物流業務標誌回
FB母公司Meta公佈的Q1財報,營收重回年增3%至286億,優於預期276億。EPS $2.2也優於預期的 $2.03。營業利潤率從20%回到了25%。 預計Q2的營收在295-320億,也高於預期的295億。全年的總支出會從860-920億降到860-900億。資本支出則是持平在300-330億
Amazon,微軟和Google都發布了Q1的財報結果,兩大AI的領頭羊巨頭公司給出了怎樣的願景
Tesla 開獎大降價後對營收和毛利的影響,總體的營收233億符合市場預期,營收年增率下滑至24%,電動車交付量年增40%至42.3萬,營收年增率則下降至18%。Q1產量比交付多1.8萬輛,電動車庫存週轉天數進一步提升至15天。
Netflix 公布Q1營收年增3.7%至81.6億符合預期的81.7億,EPS $2.88 則高於預期的2.82。Operating Margin恢復至21%優於預期的19.9%。Q1新增175萬用戶低於華爾街預期的241萬。
你可能也想看
Google News 追蹤
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、精選公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
演講內容關於當前的發展趨勢以及生成式 AI 對各行各業的影響,以及未來展望。演講者提到與臺灣合作夥伴一起將各種產品帶給全世界,並強調有了臺灣和各合作夥伴的支持,才能打造出世界級的 AI 基礎架構。
Thumbnail
輝達(NVIDIA)執行長黃仁勳在臺大體育館演講,揭露了未來幾年新產品的開發計劃,包括下一代GPU平臺Rubin的預告、推論微服務NIM的發布以及在氣候預測領域的應用。演講中,黃仁勳也提及數位人AI技術的運用和潛力,以及與合作夥伴的合作。未來展望和新產品的揭露顯示著輝達對於AI技術發展的積極態度。
Thumbnail
★ 「5168實價登錄比價王」原文連結 本周隨著2024台北國際電腦展(ComputeX)開展,重量級科技大咖紛紛抵台。 無論是前往校園發表演說、或前往展場發表會,替自家產品站台宣傳等,一言一行都備受外界關注。 輝達(NIVIDIA)創辦人黃仁勳,被外界冠上「AI教父」封號,「親民形象」
Thumbnail
哈佛商業評論認為Jensen Huang, 黃仁勳是2019年度最佳CEO,他強調永遠不要停止提出問題和尋求答案,堅持和韌性是克服挑戰並取得成功的關鍵。
Thumbnail
根據高盛最近的研究報告,未來的個人電腦和移動設備將搭載更多由AI增強後的應用程式,如AI增強、安全性提升和運算能力強化。 消費性電子股票組合<GSXUPCAI>也顯示出潛力,並列出了成分股以及其權重。
Thumbnail
各位老細介紹返,細佬 2月一早已經寫了 Nvidia。 當然不是話早 10年前已經一早寫,不過也不算太晚吧,開始吃上升趨勢 ~ 留意當時坊間不少人批評 Nvidia 需求疲弱,買這隻股票不會有好下場,老黃不值得信任,股票估值過高不合理 etc -> 阿小財演你尷尬不尷尬 ? 好快會被打臉 小弟暫時只
以前我一直以爲安裝Nvidia Driver比Ubuntu 還困難一點,現在只要幾個步驟就可以了 加入rpmfusion 系統更新 安裝nVidia 重開機
Thumbnail
雖然不是完全沒有競爭者,但基本上,在資料中心端的AI 運算處理器中,NVIDIA 可以說是在市場上佔據壟斷性的地位。也就是說,如果未來幾年,科技產業的重點是各家巨頭與新創獨角獸之間的 AI 大戰的話,那 NVIDIA 就是這場戰爭背後,最大的軍火供應商。
「ChatGPT是人工智慧(AI)的iPhone時刻」-Nvidia黃仁勳在加州的伯克利哈斯大學演講 Nvidia($Nvda)剛公佈了第四季財報 🟢營收: 60.5億美元優於預期60.2億美元 🟢EPS: 0.88美元優於預期0.81美元 營收⬆️ EPS⬆️ *顯卡: 三大人工智慧平台需要大
Thumbnail
昨天最重磅的消息,就是超微(AMD)公布慘到爆的營收預估,第 3 季初估營收約 56 億美元,比先前預測少約 11 億美元!毛利率預估也僅僅只有 42%,大幅低於上一季的 46%!
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、精選公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
演講內容關於當前的發展趨勢以及生成式 AI 對各行各業的影響,以及未來展望。演講者提到與臺灣合作夥伴一起將各種產品帶給全世界,並強調有了臺灣和各合作夥伴的支持,才能打造出世界級的 AI 基礎架構。
Thumbnail
輝達(NVIDIA)執行長黃仁勳在臺大體育館演講,揭露了未來幾年新產品的開發計劃,包括下一代GPU平臺Rubin的預告、推論微服務NIM的發布以及在氣候預測領域的應用。演講中,黃仁勳也提及數位人AI技術的運用和潛力,以及與合作夥伴的合作。未來展望和新產品的揭露顯示著輝達對於AI技術發展的積極態度。
Thumbnail
★ 「5168實價登錄比價王」原文連結 本周隨著2024台北國際電腦展(ComputeX)開展,重量級科技大咖紛紛抵台。 無論是前往校園發表演說、或前往展場發表會,替自家產品站台宣傳等,一言一行都備受外界關注。 輝達(NIVIDIA)創辦人黃仁勳,被外界冠上「AI教父」封號,「親民形象」
Thumbnail
哈佛商業評論認為Jensen Huang, 黃仁勳是2019年度最佳CEO,他強調永遠不要停止提出問題和尋求答案,堅持和韌性是克服挑戰並取得成功的關鍵。
Thumbnail
根據高盛最近的研究報告,未來的個人電腦和移動設備將搭載更多由AI增強後的應用程式,如AI增強、安全性提升和運算能力強化。 消費性電子股票組合<GSXUPCAI>也顯示出潛力,並列出了成分股以及其權重。
Thumbnail
各位老細介紹返,細佬 2月一早已經寫了 Nvidia。 當然不是話早 10年前已經一早寫,不過也不算太晚吧,開始吃上升趨勢 ~ 留意當時坊間不少人批評 Nvidia 需求疲弱,買這隻股票不會有好下場,老黃不值得信任,股票估值過高不合理 etc -> 阿小財演你尷尬不尷尬 ? 好快會被打臉 小弟暫時只
以前我一直以爲安裝Nvidia Driver比Ubuntu 還困難一點,現在只要幾個步驟就可以了 加入rpmfusion 系統更新 安裝nVidia 重開機
Thumbnail
雖然不是完全沒有競爭者,但基本上,在資料中心端的AI 運算處理器中,NVIDIA 可以說是在市場上佔據壟斷性的地位。也就是說,如果未來幾年,科技產業的重點是各家巨頭與新創獨角獸之間的 AI 大戰的話,那 NVIDIA 就是這場戰爭背後,最大的軍火供應商。
「ChatGPT是人工智慧(AI)的iPhone時刻」-Nvidia黃仁勳在加州的伯克利哈斯大學演講 Nvidia($Nvda)剛公佈了第四季財報 🟢營收: 60.5億美元優於預期60.2億美元 🟢EPS: 0.88美元優於預期0.81美元 營收⬆️ EPS⬆️ *顯卡: 三大人工智慧平台需要大
Thumbnail
昨天最重磅的消息,就是超微(AMD)公布慘到爆的營收預估,第 3 季初估營收約 56 億美元,比先前預測少約 11 億美元!毛利率預估也僅僅只有 42%,大幅低於上一季的 46%!