這一章主要在探討,如何模擬震盪(oscillation)相關的物理現象如波、單擺、彈簧等。在模擬這些物理現象時,如果能善用三角函數這個非常有用的數學工具,將能收到事半功倍的效果。
The Nature of Code閱讀心得與Python實作:Chap. 3 Oscillation
更新於 發佈於 閱讀時間約 1 分鐘
留言
留言分享你的想法!
ysf的沙龍
19會員
155內容數
寫點東西自娛娛人
ysf的沙龍的其他內容
2024/09/20
這一節要模擬的是擺(pendulum)這個裝置中,構造最簡單、具有理想化性質的單擺(simple pendulum)。

2024/09/20
這一節要模擬的是擺(pendulum)這個裝置中,構造最簡單、具有理想化性質的單擺(simple pendulum)。

2024/09/16
我們曾經利用sin函數來模擬彈簧吊錘(bob)的運動,雖然這樣子的做法程式很容易寫,但是卻沒辦法模擬彈簧吊錘受到如風力、重力等環境中其他作用力的影響下,在空間中的運動狀況。要克服這樣子的問題,就不能再倚靠sin函數,而必須改用能夠用來計算彈簧彈力的虎克定律(Hooke's law)。

2024/09/16
我們曾經利用sin函數來模擬彈簧吊錘(bob)的運動,雖然這樣子的做法程式很容易寫,但是卻沒辦法模擬彈簧吊錘受到如風力、重力等環境中其他作用力的影響下,在空間中的運動狀況。要克服這樣子的問題,就不能再倚靠sin函數,而必須改用能夠用來計算彈簧彈力的虎克定律(Hooke's law)。

2024/09/13
在x軸上依序取一些點,然後把這些點以及其對應的sin函數的值所構成的二維座標點畫出來時,就可以看到由這個sin函數所產生的像波一樣的圖案,也就是波型(wave pattern)。不同樣式的波型,可以用來設計生物的軀幹或肢體,也可以用來模擬像水這類柔軟的表面。

2024/09/13
在x軸上依序取一些點,然後把這些點以及其對應的sin函數的值所構成的二維座標點畫出來時,就可以看到由這個sin函數所產生的像波一樣的圖案,也就是波型(wave pattern)。不同樣式的波型,可以用來設計生物的軀幹或肢體,也可以用來模擬像水這類柔軟的表面。

你可能也想看




















2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

嗨!歡迎來到 vocus
vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。
vocus 平台匯聚了

模擬世界是我們寫程式造出來的,我們就是模擬世界的主宰,所以各種作用力要長什麼樣子、要怎麼個作用法,都由我們決定。不過,如果希望這些作用力看起來像真實世界的作用力一樣,那在寫程式的時候,套用這些作用力在真實世界中的物理公式,會是比較省時省力的做法。

模擬世界是我們寫程式造出來的,我們就是模擬世界的主宰,所以各種作用力要長什麼樣子、要怎麼個作用法,都由我們決定。不過,如果希望這些作用力看起來像真實世界的作用力一樣,那在寫程式的時候,套用這些作用力在真實世界中的物理公式,會是比較省時省力的做法。

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
1.2.6 熱的傳導
1.2.7 十九世紀的尾聲
三
必須說一下波希米亞數學家/邏輯學家/哲學家/神學

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
1.2.6 熱的傳導
1.2.7 十九世紀的尾聲
三
必須說一下波希米亞數學家/邏輯學家/哲學家/神學

這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。

這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
1.2.6 熱的傳導
一
偏微分方程始於公元十八世紀,在十九世紀茁長壯大。
隨著物理科學擴展越深 (理

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
1.2.6 熱的傳導
一
偏微分方程始於公元十八世紀,在十九世紀茁長壯大。
隨著物理科學擴展越深 (理

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5弦的振動
八
在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。
一方面,特朗貝爾和歐拉等擴大了

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5弦的振動
八
在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。
一方面,特朗貝爾和歐拉等擴大了

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
三
1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen

1.0 從函數到函算語法
1.2 函數概念小史
1.2.1 中譯的來源
1.2.2 一個速度問題
1.2.3 幾何的方法
1.2.4 微積分的記法
1.2.5 弦的振動
三
1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen

直觀理解
導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。
偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。 (針對各維度的調整 或者稱變化 你要調多少)
應用
導數:在物理學中應用廣泛,例如描述速度和加速度。
偏導數:在多變量分析、優

直觀理解
導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。
偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。 (針對各維度的調整 或者稱變化 你要調多少)
應用
導數:在物理學中應用廣泛,例如描述速度和加速度。
偏導數:在多變量分析、優
這篇要來分享關於「頻率」這件事,談到頻率,不免就要順便談談「吸引力法則」,現在訪間已經有多書籍、影片都有詳細描述吸引力法則的運行方式。它並不是什麼怪力亂神也不是什麼偽科學,實則吸引力法則是個再科學不過的量子力學,同頻相吸的概念而已。
這篇要來分享關於「頻率」這件事,談到頻率,不免就要順便談談「吸引力法則」,現在訪間已經有多書籍、影片都有詳細描述吸引力法則的運行方式。它並不是什麼怪力亂神也不是什麼偽科學,實則吸引力法則是個再科學不過的量子力學,同頻相吸的概念而已。