植物如何產生「銅牆鐵壁」?

更新於 發佈於 閱讀時間約 5 分鐘

根據目前的化石證據推斷,植物大約在4.7億年前由藻類演化而來。


這個登陸事件的難度,應該不亞於太空人登陸月球。為了要能夠獲取足夠的陽光,植物必須要把自己「撐」起來;而把自己給「撐」起來之後,要如何把水分從根部送到地上的莖、葉,又是另一個難題。


這兩個難題,都需要堅強的支持組織:次生細胞壁(secondary cell wall)。次生細胞壁由纖維素、木質素(lignin)等構成,提供細胞壁高強度的支持力量,讓植物的莖可以維持自己的地上部分挺立。對於木本植物來說,次生細胞壁是很重要的支持組織;對草本植物來說,因為細胞壁中所含木質素不足,所以還需要膨壓(turgor pressure)。


可能很多人對次生細胞壁這個名詞相當陌生。植物的細胞壁可以分為初生細胞壁(primary cell wall)與次生細胞壁。初生細胞壁在植物完成細胞分裂時變已經形成,通常很薄(小於1um),主要成分就是纖維素;次生細胞壁則是在植物細胞停止生長後才形成的結構,除了纖維素之外還有木質素。


為了要把自己給「撐」起來,植物的莖裡面有特化的支持組織,如厚壁細胞與厚角細胞。這些細胞有極厚的次生細胞壁,裡面也沒有活細胞的存在,所以我們常說這些細胞是「有功能時就死了」(dead when functional)。


但是,是什麼驅動植物的次生細胞壁形成?


過去的研究發現,有一個轉錄因子「KNOX2」,對次生細胞壁的形成很重要。「KNOX2」與「BELL1」形成一個「異源二聚體」,負責調控次生細胞壁的形成。其中「KNOX2」不僅肩負著次生細胞壁形成的重任,還會控制果膠沈積,也參與花粉的發育。


但是,KNOX2不能沒有BELL1。研究發現,如果沒有BELL1KNOX2就無法進入細胞核去發揮它的功能。


過去的研究發現,從褐藻、紅藻、單細胞綠藻到陸地植物,都可以找到這哥倆好的出現,顯示了它們對植物真的非常重要。這讓研究團隊想要去看看,在地錢(Marchantia)裡面,是否也有它們的存在呢?



結果是肯定的。地錢的基因體裡面,的確可以找到這兩個傢伙的存在。透過分析地錢的轉錄體,研究團隊發現這兩個基因在孢子體中表現,而且在配子體受精後2-3週,就可以偵測到開始在配子體裡面表現了。


靠著使用基因編輯技術,研究團隊製作了缺少這兩個基因的突變株。他們發現,只要缺少任何一個,地錢的孢子體就會變小、孢柄(seta)無法延長,孢子也只剩下野生種的一半大。觀察孢囊壁發現,不像野生種是呈現環狀加厚,突變株出現單向左旋的加厚狀態,而這使得細胞無法延長、孢囊無法開裂,於是孢子就無法釋放。


另外,研究團隊還發現突變株的孢子缺乏果膠且對乾燥敏感,而且孢子在成熟後很容易塌陷,顯示孢子壁的結構完整性受到了非常嚴重的影響。


但是,很奇妙的是,研究團隊發現,突變株的性狀完全由母本的基因型來決定!也就是說,如果母本是突變株,那麼不論父本是否是突變株,產生的孢子體都會呈現突變株的性狀。但是,如果母本是野生種,則產生的孢子體都會呈現野生種的性狀。這是不是一種基因銘印(genome imprinting)呢?目前不知道,還需要進一步的研究來探討。



總而言之,透過使用生物資訊工具,研究團隊找到了地錢的「KNOX2」與「BELL1」,也發現這兩個基因對地錢的次生細胞壁形成也非常重要。沒有了它們,地錢無法形成好的孢子!另外,地錢的研究結果也進一步強調了這兩個基因對植物的重要性!


最後,我忍不住要來用一下《琅琊榜》的哏:我覺得它們兩個很像蔡荃跟沈追啊!

圖片取自《琅琊榜》

圖片取自《琅琊榜》


參考文獻:


Dierschke, T., Levins, J., Lampugnani, E. R., Ebert, B., Zachgo, S., & Bowman, J. L. (2024). Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Current Biology, 34, 1-10. https://doi.org/10.1016/j.cub.2024.09.061


留言
avatar-img
留言分享你的想法!
麥康納-avatar-img
2024/10/25
有功能時就死了 有趣的修辭 想想人身上也有,指甲頭髮之類
葉綠舒-avatar-img
發文者
2024/10/25
麥康納 我常跟學生講,做人不能像這些細胞,死了才有功能,就悲哀了。
❦ 莊小昕-avatar-img
2024/10/25
謝謝老師分享,"基因銘印"讓我覺得很好奇!我很喜歡蔡荃跟沈追!
avatar-img
老葉報報
242會員
780內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
看更多
你可能也想看
Thumbnail
孩子寫功課時瞇眼?小心近視!這款喜光全光譜TIONE⁺光健康智慧檯燈,獲眼科院長推薦,網路好評不斷!全光譜LED、180cm大照明範圍、5段亮度及色溫調整、350度萬向旋轉,讓孩子學習更舒適、保護眼睛!
Thumbnail
孩子寫功課時瞇眼?小心近視!這款喜光全光譜TIONE⁺光健康智慧檯燈,獲眼科院長推薦,網路好評不斷!全光譜LED、180cm大照明範圍、5段亮度及色溫調整、350度萬向旋轉,讓孩子學習更舒適、保護眼睛!
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
當花朵、葉子或果實自然脫落後,內部的非表皮細胞會暴露在外部環境中。過去認為,植物在器官脫落前,就會以木栓質與木質素保護這些新表面;但最近的研究發現,其實並不是這樣喔!而是直接把嫩嫩的植物細胞就這樣暴露在空氣中! 不過,過一陣子,這些細胞就變成表皮細胞了...這是怎麼變的呢?來看看!
Thumbnail
當花朵、葉子或果實自然脫落後,內部的非表皮細胞會暴露在外部環境中。過去認為,植物在器官脫落前,就會以木栓質與木質素保護這些新表面;但最近的研究發現,其實並不是這樣喔!而是直接把嫩嫩的植物細胞就這樣暴露在空氣中! 不過,過一陣子,這些細胞就變成表皮細胞了...這是怎麼變的呢?來看看!
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
目前主流認為開花植物(被子植物)是出現在侏儸紀到白堊紀早期(有些人認為更早),昆蟲協助植物授粉也被認為是發生在開花植物出現之後,但近年來的化石發現這樣的共生現象早在二疊紀的裸子植物就已存在。以往要從化石了解古生代或中生代昆蟲授粉的資訊都是由間接的途徑得知,如植物的毬果、花朵的形態適合蟲媒或者昆蟲的口
Thumbnail
目前主流認為開花植物(被子植物)是出現在侏儸紀到白堊紀早期(有些人認為更早),昆蟲協助植物授粉也被認為是發生在開花植物出現之後,但近年來的化石發現這樣的共生現象早在二疊紀的裸子植物就已存在。以往要從化石了解古生代或中生代昆蟲授粉的資訊都是由間接的途徑得知,如植物的毬果、花朵的形態適合蟲媒或者昆蟲的口
Thumbnail
1.2億年前,它們的出現引領著生態系統的翻天覆地的變革。這些植物之所以如此優越,源於它們的革命性演化策略。花粉管的出現為花粉傳遞提供了全新的通道,不再受水分限制;心皮的保護提高了基因多樣性,增強適應性。更令人驚奇的是,被子植物學會了合作,與昆蟲合作授粉,使得它們能夠在各種環境中蓬勃生長。
Thumbnail
1.2億年前,它們的出現引領著生態系統的翻天覆地的變革。這些植物之所以如此優越,源於它們的革命性演化策略。花粉管的出現為花粉傳遞提供了全新的通道,不再受水分限制;心皮的保護提高了基因多樣性,增強適應性。更令人驚奇的是,被子植物學會了合作,與昆蟲合作授粉,使得它們能夠在各種環境中蓬勃生長。
Thumbnail
光究竟是如何進入生命史的演化?最早的光感應系統又背負著什麼樣的生命任務?植物和動物的視覺又有何不同?一起來探究吧!
Thumbnail
光究竟是如何進入生命史的演化?最早的光感應系統又背負著什麼樣的生命任務?植物和動物的視覺又有何不同?一起來探究吧!
Thumbnail
植物進行光合作用,會吸收二氧化碳,釋放氧氣,這是大家所熟知的概念,但植物並非只造氧不需氧。植物和我們人一樣也會呼吸,植物透過呼吸作用產生能量,這些能量能維持植物生命的一切活動,讓植物能去吸收養分,因此植物的供氧狀況會影響其吸收養分的能力,一旦缺氧,對植物的危害非常明顯。
Thumbnail
植物進行光合作用,會吸收二氧化碳,釋放氧氣,這是大家所熟知的概念,但植物並非只造氧不需氧。植物和我們人一樣也會呼吸,植物透過呼吸作用產生能量,這些能量能維持植物生命的一切活動,讓植物能去吸收養分,因此植物的供氧狀況會影響其吸收養分的能力,一旦缺氧,對植物的危害非常明顯。
Thumbnail
土壤經過下雨或灌溉,會保持一些水分,當這些水分快要用完,卻無法即時補充的時候,植物的葉片會萎凋,短期內供水會恢復,但過久就沒辦法恢復,這些土壤最後所含的水分就稱為「永久凋萎點」,土壤濕度低於永久凋萎點的植物會在12小時內枯萎。 雖然世界上多數地區都不是極端乾燥,但還是會面臨缺水乾旱的問題,甚至在較
Thumbnail
土壤經過下雨或灌溉,會保持一些水分,當這些水分快要用完,卻無法即時補充的時候,植物的葉片會萎凋,短期內供水會恢復,但過久就沒辦法恢復,這些土壤最後所含的水分就稱為「永久凋萎點」,土壤濕度低於永久凋萎點的植物會在12小時內枯萎。 雖然世界上多數地區都不是極端乾燥,但還是會面臨缺水乾旱的問題,甚至在較
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
Thumbnail
上一篇文章提到蒸散作用,接著我們再來多了解一點。提到蒸散作用,你會想到什麼,除了之前提到的大量散熱,國中生物課應該也學到小部份,像是「氣孔」,但如果仔細了解,植物的蒸散作用不只是經由氣孔調節,也能經由非氣孔調節。 雖然莖、葉、花、果等都能進行水分蒸散,但主要還是透過葉面,從氣孔或角質蒸散,氣孔部份
Thumbnail
上一篇文章提到蒸散作用,接著我們再來多了解一點。提到蒸散作用,你會想到什麼,除了之前提到的大量散熱,國中生物課應該也學到小部份,像是「氣孔」,但如果仔細了解,植物的蒸散作用不只是經由氣孔調節,也能經由非氣孔調節。 雖然莖、葉、花、果等都能進行水分蒸散,但主要還是透過葉面,從氣孔或角質蒸散,氣孔部份
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News