付費限定

大學微積分題解-Linearization and Differentials線性化和微分

更新於 發佈於 閱讀時間約 1 分鐘

Linearization是用切線來近似函數,當變數在某點附近變化時,我們可以用該點的切線來估計函數值。

給定函數 f(x)x=a 可微,則其Linear Approximation為:

以行動支持創作者!付費即可解鎖
本篇內容共 428 字、0 則留言,僅發佈於數學微積分題解你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
10會員
215內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/30
本章節介紹二變數函數的極限觀念,並提供幾題單元範圍內的範例練習,讓讀者更加了解本章節所教之觀念。
Thumbnail
2025/04/30
本章節介紹二變數函數的極限觀念,並提供幾題單元範圍內的範例練習,讓讀者更加了解本章節所教之觀念。
Thumbnail
2025/04/30
本章節深入淺出介紹多變數函數的定義、幾何觀念與範例演習,讓讀者能夠大致掌握本單元的重點。
Thumbnail
2025/04/30
本章節深入淺出介紹多變數函數的定義、幾何觀念與範例演習,讓讀者能夠大致掌握本單元的重點。
Thumbnail
2025/04/30
本單元介紹參數曲線的微積分,讀者將能了解"參數式與微積分"的多樣題型並學會如何解答它們
Thumbnail
2025/04/30
本單元介紹參數曲線的微積分,讀者將能了解"參數式與微積分"的多樣題型並學會如何解答它們
Thumbnail
看更多
你可能也想看
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
本章節將帶你深入理解 線性化(Linearization)與微分(Differentials) 在微積分中的概念與應用。透過函數在某點的 切線近似,我們能快速估算複雜函數的值,並以 微分觀點 分析小變化量對結果的影響。
Thumbnail
本章節將帶你深入理解 線性化(Linearization)與微分(Differentials) 在微積分中的概念與應用。透過函數在某點的 切線近似,我們能快速估算複雜函數的值,並以 微分觀點 分析小變化量對結果的影響。
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News