付費限定

大學微積分題解-二變數函數的局部極值與鞍點

更新於 發佈於 閱讀時間約 5 分鐘

前導

為了找出單變數函數的局部極值,我們會找出圖形上具有水平切線線段的點。在這些點上,我們檢查是否為局部極大值(local maxima)局部極小值(local minima)或反曲點(inflection point)

以行動支持創作者!付費即可解鎖
本篇內容共 1962 字、0 則留言,僅發佈於數學微積分題解你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
9會員
215內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/05/10
本篇文章介紹二變數函數的線性化與全微分。線性化是利用切平面近似函數,以簡化複雜函數的計算。全微分則是用來估計函數在多變量微小變化下的總變化量。文章包含公式推導、範例演練及圖表說明,幫助讀者理解概念並應用於實際問題。
Thumbnail
2025/05/10
本篇文章介紹二變數函數的線性化與全微分。線性化是利用切平面近似函數,以簡化複雜函數的計算。全微分則是用來估計函數在多變量微小變化下的總變化量。文章包含公式推導、範例演練及圖表說明,幫助讀者理解概念並應用於實際問題。
Thumbnail
2025/05/10
本篇文章探討多變數函數的梯度向量與等值面切平面、法線的關係,並提供計算切平面方程式、法線方程式及估計函數在特定方向變化量的範例與步驟說明。
Thumbnail
2025/05/10
本篇文章探討多變數函數的梯度向量與等值面切平面、法線的關係,並提供計算切平面方程式、法線方程式及估計函數在特定方向變化量的範例與步驟說明。
Thumbnail
2025/05/10
本文章提供方向導數的完整教學,涵蓋定義、計算方法、梯度向量、性質、與等高線的關係,並附有範例與圖解,方便讀者理解。
Thumbnail
2025/05/10
本文章提供方向導數的完整教學,涵蓋定義、計算方法、梯度向量、性質、與等高線的關係,並附有範例與圖解,方便讀者理解。
Thumbnail
看更多
你可能也想看
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
當你邊吃粽子邊看龍舟競賽直播的時候,可能會順道悼念一下2300多年前投江的屈原。但你知道端午節及其活動原先都與屈原毫無關係嗎?這是怎麼回事呢? 本文深入探討端午節設立初衷、粽子、龍舟競渡與屈原自沉四者。看完這篇文章,你就會對端午、粽子、龍舟和屈原的四角關係有新的認識喔。那就讓我們一起解開謎團吧!
Thumbnail
當你邊吃粽子邊看龍舟競賽直播的時候,可能會順道悼念一下2300多年前投江的屈原。但你知道端午節及其活動原先都與屈原毫無關係嗎?這是怎麼回事呢? 本文深入探討端午節設立初衷、粽子、龍舟競渡與屈原自沉四者。看完這篇文章,你就會對端午、粽子、龍舟和屈原的四角關係有新的認識喔。那就讓我們一起解開謎團吧!
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾
Thumbnail
《底層邏輯》在【超閱讀觀點83】有介紹過,西恩之所以要把《底層邏輯2》再隔兩本介紹,主要原因在於,這本書是以許多人聞之色變的「數學」出發,把我們會遇到的「現象」用數學解釋,所以基本上,相較於《底層邏輯》的高易讀性,《底層邏輯2》顯然沒辦法讀那麼快,且更需要思考,不過能得到的收穫也更多。 《底層邏輯
Thumbnail
《底層邏輯》在【超閱讀觀點83】有介紹過,西恩之所以要把《底層邏輯2》再隔兩本介紹,主要原因在於,這本書是以許多人聞之色變的「數學」出發,把我們會遇到的「現象」用數學解釋,所以基本上,相較於《底層邏輯》的高易讀性,《底層邏輯2》顯然沒辦法讀那麼快,且更需要思考,不過能得到的收穫也更多。 《底層邏輯
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News