AI說書 - 從0開始 - 106 | 低頻率詞彙篩除方法

閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


我們從 AI說書 - 從0開始 - 103AI說書 - 從0開始 - 105 | AI 資料準備 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處理完成後保存它們:

from pickle import load
from pickle import dump
from collections import Counter

# Load a clean dataset
def load_clean_sentences(filename):
return load(open(filename, 'rb'))


# Save a list of clean sentences to file
def save_clean_sentences(sentences, filename):
dump(sentences, open(filename, 'wb'))
print('Saved: %s' % filename)


我們現在定義一個函數來創建一個詞彙計數器,了解一個詞在我們將解析的序列中使用的次數是很重要的,例如,如果一個詞在包含兩百萬行的數據集中只使用了一次,我們將浪費寶貴的 GPU 資源來學習它!讓我們來定義這個計數器:

# Create a frequency table for all words
def to_vocab(lines):
vocab = Counter()
for line in lines:
tokens = line.split()
vocab.update(tokens)
return vocab


字詞出現頻率太低的,就把它拿掉:

# Remove all words with a frequency below a threshold
def trim_vocab(vocab, min_occurrence):
tokens = [k for k, c in vocab.items() if c >= min_occurrence]
return set(tokens)
avatar-img
170會員
452內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 今天我們以 Persona Based 模擬為基礎,來進行 Prompt 撰寫 範例 - Pers
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 今天我們以 Role Based 模擬為基礎,來進行 Prompt 撰寫 範例 - Role Ba
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 103 所載入的資料集,現在要來進行資料前置處理,首先載入需要的依賴: import pickle from pickle impo
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 施行 Universal Simulation Pattern (USP) 需要對角色、流程和場景結構
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 102 說要窺探 WMT 資料集,以下著手資料集下載程式: import urllib.request # Define the
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 今天我們以 Persona Based 模擬為基礎,來進行 Prompt 撰寫 範例 - Pers
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 今天我們以 Role Based 模擬為基礎,來進行 Prompt 撰寫 範例 - Role Ba
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 103 所載入的資料集,現在要來進行資料前置處理,首先載入需要的依賴: import pickle from pickle impo
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 施行 Universal Simulation Pattern (USP) 需要對角色、流程和場景結構
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 102 說要窺探 WMT 資料集,以下著手資料集下載程式: import urllib.request # Define the
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
最近AI的産圖越來越多,是時候開始整理了,隨機生成的廢圖基本上都清除了,剩下一堆感覺不差的挑一挑,只是數量有點多。
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
事前聲明: 我先說明我的筆記製作流程: 在YT下載 >> 生成逐字稿 >> 利用 AI 整理條列式筆記 >> 人工整理 我已經將逐字稿放上來分享在<<1+1罐罐 | 股癌筆記 + 股癌未校稿逐字稿>>,不過逐字稿多少會有錯,如果要使用請多注意。 <<1+1罐罐 | 股癌筆記 + 股癌未校稿逐
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
Thumbnail
http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
最近AI的産圖越來越多,是時候開始整理了,隨機生成的廢圖基本上都清除了,剩下一堆感覺不差的挑一挑,只是數量有點多。
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
事前聲明: 我先說明我的筆記製作流程: 在YT下載 >> 生成逐字稿 >> 利用 AI 整理條列式筆記 >> 人工整理 我已經將逐字稿放上來分享在<<1+1罐罐 | 股癌筆記 + 股癌未校稿逐字稿>>,不過逐字稿多少會有錯,如果要使用請多注意。 <<1+1罐罐 | 股癌筆記 + 股癌未校稿逐
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
Thumbnail
http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888 http://tinyurl.com/12000ai888