我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
延續AI說書 - 從0開始 - 24示範了ChatGPT程式的能力,現在我們繼續做下去。
Transformers for Natural Language Processing and Computer VisionWe create a DecisionTreeClassifier object from Scikit-learn's tree module and set the random state to 42. We then train the model on the training data using the fit method.
model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train)
We use the score method of the trained model to evaluate the accuracy of the model on the testing set. We then print the accuracy to the console.
score = model.score(X_test, y_test)
print(f"Accuracy: {score:.2f}")
y_pred = model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation = "nearest", cmap = plt.cm.Blues)
ax. Figure.colorbar(im, ax = ax)
ax.set(xticks = np.arange(cm.shape[1]),
yticks = np.arange(cm.shape[0]),
xticklabels = iris.target_names, yticklabels = iris.target_names,
title = "Confusion matrix",
xlabel = "Predicted label",
ylabel = "True label")
plt.setp(ax.get_xticklabels(), rotation = 45, ha = "right", rotation_mode = "anchor")
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], "d"), ha = "center", va = "center", color = "white" if cm[i, j] > cm.max() / 2 else "black")
fig.tight_layout()