AI說書 - 從0開始 - 24

更新於 發佈於 閱讀時間約 4 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


延續AI說書 - 從0開始 - 23示範了ChatGPT回答的能力,現在我們來看看ChatGPT撰寫程式的能力。


嘗試問以下問題:Write a detailed explanation for a beginner in Python for this code.


其回答如下:

  1. Import libaries

We import several libraries that we will use throughout the code. NumPy and Pandas are used for data manipulation, Matplotlib is used for data visualization, Scikit-learn is used for machine learning, and we import specific functions like load_iris, train_test_split, DecisionTreeClassifier, confusion_matrix, and plot_tree from the respective Scikit-learn modules.

import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.tree import plot_tree
  1. Load the Iris dataset

We use the load_iris function from Scikit-learn's datasets module to load the Iris dataset into a variable called iris.

iris = load_iris()
  1. Split the dataset into training and testing sets

We use Scikit-learn's train_test_split function to split the dataset into training and testing sets. We pass in iris.data as the features and iris.target as the labels. We set the test size to 20%, which means that 20% of the data will be used for testing and 80% will be used for training. We also set the random state to 42 to ensure that the results are reproducible.

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)


此時,當我看著 ChatGPT 寫下到目前為止的所有內容並仍在瘋狂地打字時,我開始想我在這一切中扮演了什麼角色?人工智慧會接管我的工作嗎?儘管我知道生成式人工智慧有很多局限性,但它仍然讓我感到困惑。

avatar-img
177會員
471內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在快速發展的人工智慧領域,一篇由微軟研究組撰寫,具有里程碑意義的155頁論文:Sparks of Art
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 接續AI說書 - Prompt Engineering - 7來談生成式AI對未來世界的轉變: 改
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20以及AI說書 - 從0開始 - 21中,闡述眾人目前對生成式AI的認知謬誤。 現在我們來談談生成式AI的根基 - Fou
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20中,闡述GPT模型的Supervised and Unsupervised觀點,接著一樣引述書籍:Transformers f
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 19中,闡述了Inference的Pipeline為t = f(n),現在我們做一些擴充與特點說明: t = f(n)其實展
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在快速發展的人工智慧領域,一篇由微軟研究組撰寫,具有里程碑意義的155頁論文:Sparks of Art
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 接續AI說書 - Prompt Engineering - 7來談生成式AI對未來世界的轉變: 改
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20以及AI說書 - 從0開始 - 21中,闡述眾人目前對生成式AI的認知謬誤。 現在我們來談談生成式AI的根基 - Fou
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20中,闡述GPT模型的Supervised and Unsupervised觀點,接著一樣引述書籍:Transformers f
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 19中,闡述了Inference的Pipeline為t = f(n),現在我們做一些擴充與特點說明: t = f(n)其實展
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
今天又發現ChatGPT的一些缺點, 使用時需要很準確的提供你想要表達的文字(我覺得還蠻重要的) 又或者拿一些範例給它看, 它就能更準確的回答問題, 因為今天我發現有一篇文章和之前寫過的完全一樣了, 所以又要再請ChatGPT生成30則勵志英文短文, 結果之前發問的問題已經消失了, 又
Thumbnail
我是一位提示工程師 生成式AI的課程,我大概已經上過1,000人次以上,最近更花費重金,在台大霖澤館舉辦一場百人AIBOT設計課程,並在將近10位的助教協助下,完成課程的設定目標。 在生成式AI的領域中,變化實在是非常地迅速,今天表現不佳的ChatGPT,明天可能問題就可以解決。 過去還有想辦
最近開始慢慢接觸ChatGPT,主要是對文本生成有興趣,且前一段時間去書店看到結合一些軟體做成影片、圖片各種內容等。
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
為了充分發揮AI的潛力,我們必須深入瞭解其運作模式和思考邏輯,並學會與AI對話的技巧。《ChatGPT提問課,做個懂AI的高效工作者》這本書提供了豐富的實例,讓讀者更容易學會如何提出精準的問題,並享有提問課程的閱讀回饋。這對於想成為懂AI的高效工作者的人來說,是一本值得一看的書。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
Thumbnail
第 19 天:使用 ChatGPT 完成了哪 3 個任務? 這幾年真的人人都在討論 AI,在我工作的產業裡,也有不少設計師擔心未來會被 AI 取代。 但我認為,AI 就像一個得力助手,可以幫助人們更快完成庶務,給我們更多時間思考更多可能~
Thumbnail
瞭解讓AI寫文章的好處,包括提高效率、快速獲取答案和資料整理
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
今天又發現ChatGPT的一些缺點, 使用時需要很準確的提供你想要表達的文字(我覺得還蠻重要的) 又或者拿一些範例給它看, 它就能更準確的回答問題, 因為今天我發現有一篇文章和之前寫過的完全一樣了, 所以又要再請ChatGPT生成30則勵志英文短文, 結果之前發問的問題已經消失了, 又
Thumbnail
我是一位提示工程師 生成式AI的課程,我大概已經上過1,000人次以上,最近更花費重金,在台大霖澤館舉辦一場百人AIBOT設計課程,並在將近10位的助教協助下,完成課程的設定目標。 在生成式AI的領域中,變化實在是非常地迅速,今天表現不佳的ChatGPT,明天可能問題就可以解決。 過去還有想辦
最近開始慢慢接觸ChatGPT,主要是對文本生成有興趣,且前一段時間去書店看到結合一些軟體做成影片、圖片各種內容等。
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
為了充分發揮AI的潛力,我們必須深入瞭解其運作模式和思考邏輯,並學會與AI對話的技巧。《ChatGPT提問課,做個懂AI的高效工作者》這本書提供了豐富的實例,讓讀者更容易學會如何提出精準的問題,並享有提問課程的閱讀回饋。這對於想成為懂AI的高效工作者的人來說,是一本值得一看的書。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
Thumbnail
第 19 天:使用 ChatGPT 完成了哪 3 個任務? 這幾年真的人人都在討論 AI,在我工作的產業裡,也有不少設計師擔心未來會被 AI 取代。 但我認為,AI 就像一個得力助手,可以幫助人們更快完成庶務,給我們更多時間思考更多可能~
Thumbnail
瞭解讓AI寫文章的好處,包括提高效率、快速獲取答案和資料整理