付費限定

單獨立因子變異數分析簡介和SPSS操作2:違反變異數同質性時的應對方式

更新於 發佈於 閱讀時間約 1 分鐘

如果變異數同質性(Homogeneity of variance)被違反時,我們可以改用Brown-Forsythe及Welch考驗,本文將簡介兩者概念和上機操作。

概念

raw-image

若我們改看根據平均數的Levene 同質性檢定,可以發現p<.05,代表同質性被違反,我們不能再進行anova,應該改用Brown-Forsythe及Welch考驗,兩者以檢定組均值的均等性。 當變數異相同的假設不成立時,一般慣用這個統計量,而不使用 F 統計量。二者都服從F分配,且不需變異數同質性假設。當顯著時,同樣再進行事後比較(Post hoc)。

以行動支持創作者!付費即可解鎖
本篇內容共 599 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
248會員
143內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2025/04/15
Random Coefficients Model一種包含隨機截距和隨機斜率的多層線性模型 。它用於建模具有層次結構的數據。本文將介紹該模型之公式、R語言分析、視覺化。
Thumbnail
2025/04/15
Random Coefficients Model一種包含隨機截距和隨機斜率的多層線性模型 。它用於建模具有層次結構的數據。本文將介紹該模型之公式、R語言分析、視覺化。
Thumbnail
2025/03/28
多層次模型中的 Random intercepts model with level-1 predictor 是層級 1 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析。最後介紹ML和REML估計法選擇。
Thumbnail
2025/03/28
多層次模型中的 Random intercepts model with level-1 predictor 是層級 1 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析。最後介紹ML和REML估計法選擇。
Thumbnail
2025/03/14
多層次模型中的 Random intercepts model with level-2 predictor 是一種層級 2 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析並視覺化。
Thumbnail
2025/03/14
多層次模型中的 Random intercepts model with level-2 predictor 是一種層級 2 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析並視覺化。
Thumbnail
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析
Thumbnail
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
當與實驗設計結合使用時,MANOVA和ANOVA分析都特別有用; 也就是說,研究設計中研究人員直接控製或操縱一個或多個自變量以確定對因變量的影響。MANOVA比ANOVAE更好的地方在於同時考量多個依變項;MANCOVA比ANCOVA更好的地方在控制控制變項後,同時考量多個依變項。本文將參考Hair
Thumbnail
當與實驗設計結合使用時,MANOVA和ANOVA分析都特別有用; 也就是說,研究設計中研究人員直接控製或操縱一個或多個自變量以確定對因變量的影響。MANOVA比ANOVAE更好的地方在於同時考量多個依變項;MANCOVA比ANCOVA更好的地方在控制控制變項後,同時考量多個依變項。本文將參考Hair
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
如果變異數同質性(Homogeneity of variance)被違反時,我們可以改用Brown-Forsythe及Welch考驗,本文將簡介兩者概念和上機操作。
Thumbnail
如果變異數同質性(Homogeneity of variance)被違反時,我們可以改用Brown-Forsythe及Welch考驗,本文將簡介兩者概念和上機操作。
Thumbnail
Kolmogorov-Smirnov 適合度檢定,該方法為檢定樣本次數分配與某一特定母群體分配間的差異是否達到顯著性(一般用來檢定常態分配或是其他類型的連續性分配)。檢定統計量邏輯、計算流程、查表值請參考下列敘述
Thumbnail
Kolmogorov-Smirnov 適合度檢定,該方法為檢定樣本次數分配與某一特定母群體分配間的差異是否達到顯著性(一般用來檢定常態分配或是其他類型的連續性分配)。檢定統計量邏輯、計算流程、查表值請參考下列敘述
Thumbnail
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
Thumbnail
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
Thumbnail
樣本變異數的大小會影響樣本平均數嗎?事實上是會的!在大部分的情況底下,兩者是不獨立的,樣本平均和樣本變異的估值存在某些相關,換句話說,樣本平均的大小會影響樣本變異數的大小
Thumbnail
樣本變異數的大小會影響樣本平均數嗎?事實上是會的!在大部分的情況底下,兩者是不獨立的,樣本平均和樣本變異的估值存在某些相關,換句話說,樣本平均的大小會影響樣本變異數的大小
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News