iPAS-初級AI應用規劃師-鑑別式AI與生成式AI的整合應用(下)

更新於 發佈於 閱讀時間約 2 分鐘


生成式 AI(Generative AI)的核心方法與應用

1.生成對抗網路(GAN, Generative Adversarial Network)

  • 概念:由生成器(Generator, G)判別器(Discriminator, D)組成,透過對抗訓練(Adversarial Training) 來提升生成效果,目標是讓生成器生成的數據能夠騙過 判別器
    • 生成器:負責隨機生成新的數據。
    • 鑑別器:負責判斷數據是真實的還是由生成器產生的。
  • 應用:
    • 圖像生成(如DCGAN、VQGAN)
    • Deepfake 技術(如換臉技術)
    • 提升解析度(SRGAN)(如低解析度影像放大)

2.變分自編碼器(VAE, Variational Autoencoder)

  • 概念:是基於機率模型的生成模型,核心在於將輸入數據轉換成隱變數空間(Latent Space),並透過隨機取樣生成新數據。
  • 應用:
    • 數據增強(生成新訓練樣本)
    • 影像重建(如醫學影像去雜訊)
    • 手寫數字生成(MNIST)

3.自回歸模型(Autoregressive Models)

  • 概念:透過遞歸方式逐步生成數據,每個步驟基於前面的輸出。
  • 應用:
    • 文本生成(如 GPT)
    • 語音合成(如 WaveNet)
    • 圖像生成(如 PixelCNN)

4.Transformer

  • 概念:Transformer 是透過自注意力機制(Self-Attention) 計算每個詞與其他詞的關聯性、多頭注意力(Multi-Head Attention)學習不同特徵,來捕捉長距離依賴關係。
  • 應用:
    • 聊天機器人(如 ChatGPT)
    • 自動摘要(如 AI 生成新聞摘要)
    • 程式碼自動補全(Copilot)

5.擴散模型(Diffusion Models)

  • 概念:透過逐步去噪(Denoising Process) 來生成數據,核心是從純雜訊恢復出清晰數據。
  • 應用:
    • 圖像生成(如Stable Diffusion、DALL·E、Midjourney)

以上資料均來自網路公開資料參考及個人想法綜合整理,因科技發展迅速,資訊不一定絕對正確,請讀者以自己的想法為主,也歡迎留言討論喔!

我是TN科技筆記,如果喜歡這篇文章,歡迎留言、點選愛心、轉發給我支持鼓勵~

也歡迎每個月請我喝杯咖啡,鼓勵我撰寫更多科技文章,一起跟著科技浪潮前進!!

>>>請我喝一杯咖啡

大家好,我是TN,喜歡分享科技領域相關資訊,希望各位不吝支持與交流!
留言
avatar-img
留言分享你的想法!
簡短介紹常見的機器學習模型如邏輯迴歸、隨機森林、K-Means、Q-Learning、CNN等
機器學習(Machine Learning)是一種讓電腦從資料中學習並改進表現的技術,而無需人類逐一編寫具體指令。想像一下,你教一個小孩認識「貓」和「狗」,不是直接告訴他每張圖片的答案,而是給他看許多例子,讓他自己找出規律。 這個想法最早由Arthur Sam
有關資料隱私與安全的重點: 資料隱私風險對企業的影響、企業應對資料隱私風險的策略、資料安全議題、AI 導入時的資安注意事項
簡短介紹常見的機器學習模型如邏輯迴歸、隨機森林、K-Means、Q-Learning、CNN等
機器學習(Machine Learning)是一種讓電腦從資料中學習並改進表現的技術,而無需人類逐一編寫具體指令。想像一下,你教一個小孩認識「貓」和「狗」,不是直接告訴他每張圖片的答案,而是給他看許多例子,讓他自己找出規律。 這個想法最早由Arthur Sam
有關資料隱私與安全的重點: 資料隱私風險對企業的影響、企業應對資料隱私風險的策略、資料安全議題、AI 導入時的資安注意事項
你可能也想看
Google News 追蹤
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
14天每天超過10小時共2,700餘張圖片生成大量操作,AI繪圖用於商業製作的利與弊。
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
如何運用A I這個工具,以人為本,不是讓AI主導你的人生。
Thumbnail
本篇文章分享了對創意和靈感來源的深入思考,以及如何將其轉化為實際的成果或解決方案的過程。透過學習、資料收集、練習、創新等方法,提出了將創意落實的思路和技巧。同時介紹了AI在外顯知識的自動化應用,以及對其潛在發展方向的討論。最後探討了傳統機器學習技術在模擬中的應用案例和對AI世界的影響。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
14天每天超過10小時共2,700餘張圖片生成大量操作,AI繪圖用於商業製作的利與弊。
Thumbnail
科技發達,AI智能也越來越發達。 蠢孩子,我每篇小說的圖片都是用AI製作的唷!!
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
如何運用A I這個工具,以人為本,不是讓AI主導你的人生。
Thumbnail
本篇文章分享了對創意和靈感來源的深入思考,以及如何將其轉化為實際的成果或解決方案的過程。透過學習、資料收集、練習、創新等方法,提出了將創意落實的思路和技巧。同時介紹了AI在外顯知識的自動化應用,以及對其潛在發展方向的討論。最後探討了傳統機器學習技術在模擬中的應用案例和對AI世界的影響。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。