用JAX訓練神經網絡

閱讀時間約 16 分鐘
Google JAX是一種用於轉換數值函數的機器學習框架。
它被描述為匯集了autograd(通過函數微分自動獲得梯度函數)和TensorFlowXLA(加速線性代數)的修改版本。
它旨在盡可能地遵循NumPy的結構和工作流程,並與各種現有框架(如TensorFlowPyTorch)一起工作
JAX 的主要功能是:
  1. grad: 自動微分/求導數
  2. jit:編譯/加速
  3. vmap:自動矢量化/批次處理(batch)
  4. pmap:SPMD編程
首先導入必要的庫
import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
再來定義一個函數random_layer_params
輸入為(m,n,key,scale)分別對應輸入神經元數量,輸出神經元數量
隨機key,和一個scale控制數值大小,主要功能是返回一個隨機初始化的層
下面那個函數init_network_params則是給定layer_sizes和隨機key
返回整個神經網路架構,這裡要提的key有點像其他框架的random_seed
目的是讓程式有可再現性.
# A helper function to randomly initialize weights and biases
# for a dense neural network layer
def random_layer_params(m, n, key, scale=1e-2):
w_key, b_key = random.split(key)
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,))

# Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params(sizes, key):
keys = random.split(key, len(sizes))
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)]

layer_sizes = [784, 512, 512, 10]
step_size = 0.01
num_epochs = 10
batch_size = 128
n_targets = 10
params = init_network_params(layer_sizes, random.PRNGKey(0))
自動批處理預測
讓我們首先定義我們的預測函數。
請注意,我們正在為單個輸入範例定義這函數。
我們將使用 JAX 的 vmap 函數來自動處理batch(批量),而不會降低性能。
from jax.scipy.special import logsumexp

def relu(x):
return jnp.maximum(0, x)

def predict(params, image):
# per-example predictions
activations = image
for w, b in params[:-1]:
outputs = jnp.dot(w, activations) + b
activations = relu(outputs)

final_w, final_b = params[-1]
logits = jnp.dot(final_w, activations) + final_b
return logits - logsumexp(logits)
讓我們檢查一下我們的預測函數是否僅適用於單個輸入。
# This works on single examples
random_flattened_image = random.normal(random.PRNGKey(1), (28 * 28,))
preds = predict(params, random_flattened_image)
print(preds.shape)
(10,)
# Doesn't work with a batch
random_flattened_images = random.normal(random.PRNGKey(1), (10, 28 * 28))
try:
preds = predict(params, random_flattened_images)
except TypeError:
print('Invalid shapes!')
Invalid shapes!
# Let's upgrade it to handle batches using `vmap`

# Make a batched version of the `predict` function
batched_predict = vmap(predict, in_axes=(None, 0))

# `batched_predict` has the same call signature as `predict`
batched_preds = batched_predict(params, random_flattened_images)
print(batched_preds.shape)
(10, 10)
至此,我們擁有了定義神經網絡並對其進行訓練所需的所有要素。我們已經構建了一個自動批處理版本的預測,我們應該能夠在損失函數中使用它
我們應該能夠使用 grad 對神經網絡參數求損失的導數。最後,我們應該能夠使用 jit 來加速一切。
def one_hot(x, k, dtype=jnp.float32):
"""Create a one-hot encoding of x of size k."""
return jnp.array(x[:, None] == jnp.arange(k), dtype)

def accuracy(params, images, targets):
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(batched_predict(params, images), axis=1)
return jnp.mean(predicted_class == target_class)

def loss(params, images, targets):
preds = batched_predict(params, images)
return -jnp.mean(preds * targets)

@jit
def update(params, x, y):
grads = grad(loss)(params, x, y)
return [(w - step_size * dw, b - step_size * db)
for (w, b), (dw, db) in zip(params, grads)]
使用tensorflow/datasets讀取訓練資料
讓我們使用看看 tensorflow/datasets的dataloader
import tensorflow as tf
# Ensure TF does not see GPU and grab all GPU memory.
tf.config.set_visible_devices([], device_type='GPU')

import tensorflow_datasets as tfds

data_dir = '/tmp/tfds'

# Fetch full datasets for evaluation
# tfds.load returns tf.Tensors (or tf.data.Datasets if batch_size != -1)
# You can convert them to NumPy arrays (or iterables of NumPy arrays) with tfds.dataset_as_numpy
mnist_data, info = tfds.load(name="mnist", batch_size=-1, data_dir=data_dir, with_info=True)
mnist_data = tfds.as_numpy(mnist_data)
train_data, test_data = mnist_data['train'], mnist_data['test']
num_labels = info.features['label'].num_classes
h, w, c = info.features['image'].shape
num_pixels = h * w * c

# Full train set
train_images, train_labels = train_data['image'], train_data['label']
train_images = jnp.reshape(train_images, (len(train_images), num_pixels))
train_labels = one_hot(train_labels, num_labels)

# Full test set
test_images, test_labels = test_data['image'], test_data['label']
test_images = jnp.reshape(test_images, (len(test_images), num_pixels))
test_labels = one_hot(test_labels, num_labels)
print('Train:', train_images.shape, train_labels.shape)
print('Test:', test_images.shape, test_labels.shape)
Train: (60000, 784) (60000, 10)
Test: (10000, 784) (10000, 10)
訓練迴圈
import time

def get_train_batches():
# as_supervised=True gives us the (image, label) as a tuple instead of a dict
ds = tfds.load(name='mnist', split='train', as_supervised=True, data_dir=data_dir)
# You can build up an arbitrary tf.data input pipeline
ds = ds.batch(batch_size).prefetch(1)
# tfds.dataset_as_numpy converts the tf.data.Dataset into an iterable of NumPy arrays
return tfds.as_numpy(ds)

for epoch in range(num_epochs):
start_time = time.time()
for x, y in get_train_batches():
x = jnp.reshape(x, (len(x), num_pixels))
y = one_hot(y, num_labels)
params = update(params, x, y)
epoch_time = time.time() - start_time

train_acc = accuracy(params, train_images, train_labels)
test_acc = accuracy(params, test_images, test_labels)
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time))
print("Training set accuracy {}".format(train_acc))
print("Test set accuracy {}".format(test_acc))
Epoch 0 in 28.30 sec
Training set accuracy 0.8400499820709229
Test set accuracy 0.8469000458717346
Epoch 1 in 14.74 sec
Training set accuracy 0.8743667006492615
Test set accuracy 0.8803000450134277
Epoch 2 in 14.57 sec
Training set accuracy 0.8901500105857849
Test set accuracy 0.8957000374794006
Epoch 3 in 14.36 sec
Training set accuracy 0.8991333246231079
Test set accuracy 0.903700053691864
Epoch 4 in 14.20 sec
Training set accuracy 0.9061833620071411
Test set accuracy 0.9087000489234924
Epoch 5 in 14.89 sec
Training set accuracy 0.9113333225250244
Test set accuracy 0.912600040435791
Epoch 6 in 13.95 sec
Training set accuracy 0.9156833291053772
Test set accuracy 0.9176000356674194
Epoch 7 in 13.32 sec
Training set accuracy 0.9192000031471252
Test set accuracy 0.9214000701904297
Epoch 8 in 13.55 sec
Training set accuracy 0.9222500324249268
Test set accuracy 0.9241000413894653
Epoch 9 in 13.40 sec
Training set accuracy 0.9253666996955872
Test set accuracy 0.9269000291824341
我們現在已經使用了三個 JAX API:
  1. grad 用於求導數(gradient)
  2. jit 用於加速
  3. vmap 用於自動批量化(batch)
我們使用 NumPy 來指定我們所有的計算,並從 tensorflow/datasets 借用了強大的數據加載器,並在 GPU 上運行了整個過程。
為什麼會看到廣告
人工智能工作經驗跟研究
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
世界目前正處於人工智能 (AI) 革命之中。 人工智能有可能改變和徹底改變許多行業和我們生活的方方面面, 而且越來越明顯的是,未來世界將嚴重依賴人工智能。 人工智能將產生重大影響的關鍵領域之一是自動化領域。 自動化是指在沒有人工干預的情況下使用技術來執行任務,已經存在了幾十年。 然而,人工智能的
在您的數據上免費使用 GPT3 這是GPT3根據Reddit的一些笑話微調後生成的笑話之一。如需更多 AI 生成的笑話,請滾動至文章末尾,我會在其中寫一些我最喜歡的由 GPT3 生成的笑話。
故事開始於2010年7月28日,「未來道具研究所」社團的兩人,岡部倫太郎和椎名真由理去秋葉原廣播會館參加中鉢博士的時間旅行理論發表會,見到了年僅18歲就在《科學》雜誌上發表學術論文的天才少女牧瀨紅莉栖。發表會結束不久後,在會館8樓深處,岡部發現了身上滿是鮮血的紅莉栖。驚慌失措的他帶著真由理立刻離開會
世界目前正處於人工智能 (AI) 革命之中。 人工智能有可能改變和徹底改變許多行業和我們生活的方方面面, 而且越來越明顯的是,未來世界將嚴重依賴人工智能。 人工智能將產生重大影響的關鍵領域之一是自動化領域。 自動化是指在沒有人工干預的情況下使用技術來執行任務,已經存在了幾十年。 然而,人工智能的
在您的數據上免費使用 GPT3 這是GPT3根據Reddit的一些笑話微調後生成的笑話之一。如需更多 AI 生成的笑話,請滾動至文章末尾,我會在其中寫一些我最喜歡的由 GPT3 生成的笑話。
故事開始於2010年7月28日,「未來道具研究所」社團的兩人,岡部倫太郎和椎名真由理去秋葉原廣播會館參加中鉢博士的時間旅行理論發表會,見到了年僅18歲就在《科學》雜誌上發表學術論文的天才少女牧瀨紅莉栖。發表會結束不久後,在會館8樓深處,岡部發現了身上滿是鮮血的紅莉栖。驚慌失措的他帶著真由理立刻離開會
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
Thumbnail
本文主要介紹,如何利用VAE變分自編碼器來訓練生成圖片。 訓練集資料將採用TF影像資料庫中的fashion_mnist VAE變分自編碼器簡單介紹 •VAE(Variational Auto-Encoder)中文名稱變分自編碼器,主要是一種將原始資料編碼到潛在向量空間,再編碼回來的神經網路。
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
本文主要筆記使用pytorch建立graph的幾個概念與實作。在傳統的神經網路模型中,數據點之間往往是互相連接和影響的,使用GNN,我們不僅處理單獨的數據點或Xb,而是處理一個包含多個數據點和它們之間連結的特徵。GNN的優勢在於其能夠將這些連結關係納入模型中,將關係本身作為特徵進行學習。
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
本文介紹了在深度學習中使用Batch Normalization來解決error surface複雜性的問題。通過特徵歸一化來加速收斂速度和訓練順利程度。同時,也提到了在測試階段使用moving average計算平均值和標準差的方法。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
Thumbnail
本文主要介紹,如何利用VAE變分自編碼器來訓練生成圖片。 訓練集資料將採用TF影像資料庫中的fashion_mnist VAE變分自編碼器簡單介紹 •VAE(Variational Auto-Encoder)中文名稱變分自編碼器,主要是一種將原始資料編碼到潛在向量空間,再編碼回來的神經網路。
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
本文主要筆記使用pytorch建立graph的幾個概念與實作。在傳統的神經網路模型中,數據點之間往往是互相連接和影響的,使用GNN,我們不僅處理單獨的數據點或Xb,而是處理一個包含多個數據點和它們之間連結的特徵。GNN的優勢在於其能夠將這些連結關係納入模型中,將關係本身作為特徵進行學習。
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
本文介紹了在深度學習中使用Batch Normalization來解決error surface複雜性的問題。通過特徵歸一化來加速收斂速度和訓練順利程度。同時,也提到了在測試階段使用moving average計算平均值和標準差的方法。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。