AI說書 - 從0開始 - 542 | VideotoText 之 Meta TimeSformer 實現 (內容擷取)

更新 發佈閱讀 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


接著進入到 AI 模型部分:

from transformers import TimesformerConfig, TimesformerModel

configuration = TimesformerConfig()
model = TimesformerModel(configuration)
configuration = model.config

import av
import torch
import numpy as np

from transformers import AutoImageProcessor, TimesformerForVideoClassification
from huggingface_hub import hf_hub_download

np.random.seed(0)


我們現在定義一個使用 PyAv 的函數,將視頻解碼並將每一幀存儲到一個初始為空列表的幀列表中。隨著視頻的解碼,幀列表會逐幀新增幀數據:

def read_video_pyav(container, indices):
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video = 0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format = "rgb24") for x in frames])
留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
244會員
950內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2025/11/05
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Meta TimeSformer 是一種基於 Transformer 的架構,專為視頻數據設計,它首先將視頻的每一幀轉換為特徵序列,這些特徵序列能夠捕捉畫面中的空間訊息
2025/11/05
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Meta TimeSformer 是一種基於 Transformer 的架構,專為視頻數據設計,它首先將視頻的每一幀轉換為特徵序列,這些特徵序列能夠捕捉畫面中的空間訊息
2025/10/31
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 OpenAI CLIP 實現 Stable Diffusion 影片的程式為: p = pipeline('text-to-video-synthesis', 'da
2025/10/31
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 OpenAI CLIP 實現 Stable Diffusion 影片的程式為: p = pipeline('text-to-video-synthesis', 'da
2025/10/30
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 OpenAI CLIP 實現 Stable Diffusion 影片的程式為: !pip install modelscope == 1.4.2 !pip inst
2025/10/30
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 OpenAI CLIP 實現 Stable Diffusion 影片的程式為: !pip install modelscope == 1.4.2 !pip inst
看更多
你可能也想看
Thumbnail
嶄新的台灣獨立調香師品牌Sunkronizo ,這個名稱源自希臘語「同步」的意思。讓香氛不單純只是氣味調製,更是個人風格的展現與靈魂意志延伸的一種溝通語言。 很適合接下來年底聖誕佳節送禮的試香組,以一星期中的日子來為全系列香氛產品命名, 是品牌創立後首個推出全系列概念作品...
Thumbnail
嶄新的台灣獨立調香師品牌Sunkronizo ,這個名稱源自希臘語「同步」的意思。讓香氛不單純只是氣味調製,更是個人風格的展現與靈魂意志延伸的一種溝通語言。 很適合接下來年底聖誕佳節送禮的試香組,以一星期中的日子來為全系列香氛產品命名, 是品牌創立後首個推出全系列概念作品...
Thumbnail
根據美國電影協會(MPA)主辦的「串流服務如何推動臺灣創意經濟」論壇內容,深入探討串流平臺對臺灣影視產業的影響、數據分析、政府政策建議、內容國際化策略,以及臺灣與「韓流」的差距。文章提出 awwrated 在串流生態系中的潛在角色,強調數據、策略與自信是臺灣影視產業發展的關鍵。
Thumbnail
根據美國電影協會(MPA)主辦的「串流服務如何推動臺灣創意經濟」論壇內容,深入探討串流平臺對臺灣影視產業的影響、數據分析、政府政策建議、內容國際化策略,以及臺灣與「韓流」的差距。文章提出 awwrated 在串流生態系中的潛在角色,強調數據、策略與自信是臺灣影視產業發展的關鍵。
Thumbnail
本文探討串流平臺(VOD)如何徹底改變好萊塢和臺灣影視產業的生態。從美國電影協會(MPA)的數據報告,揭示串流服務在臺灣的驚人普及率與在地內容的消費趨勢。文章分析國際作品如何透過在地化元素開拓新市場。同時,作者也擔憂政府過度監管可能扼殺臺灣影視創新自由,以越南為鑑,呼籲以開放態度擁抱串流時代的新機遇
Thumbnail
本文探討串流平臺(VOD)如何徹底改變好萊塢和臺灣影視產業的生態。從美國電影協會(MPA)的數據報告,揭示串流服務在臺灣的驚人普及率與在地內容的消費趨勢。文章分析國際作品如何透過在地化元素開拓新市場。同時,作者也擔憂政府過度監管可能扼殺臺灣影視創新自由,以越南為鑑,呼籲以開放態度擁抱串流時代的新機遇
Thumbnail
你是否覺得與 AI 對話總是辭不達意?本文將分享一套「科技通靈」的實踐儀式,拆解四個關鍵步驟,教你如何超越單純的提示詞詠唱。這不只是一篇教學,而是一場心態的轉變,引導你從操作者蛻變為能與 AI 共同創造、真正「賦靈」的數位鍊金術士。
Thumbnail
你是否覺得與 AI 對話總是辭不達意?本文將分享一套「科技通靈」的實踐儀式,拆解四個關鍵步驟,教你如何超越單純的提示詞詠唱。這不只是一篇教學,而是一場心態的轉變,引導你從操作者蛻變為能與 AI 共同創造、真正「賦靈」的數位鍊金術士。
Thumbnail
這場講座將帶領你逐步入門生成式AI,從認識AI到實際應用,包含五大提問技巧、圖像生成實戰、工作流應用案例、真實經驗分享以及講師自身的轉變經驗,讓你輕鬆學會使用AI提升生活和工作效率。
Thumbnail
這場講座將帶領你逐步入門生成式AI,從認識AI到實際應用,包含五大提問技巧、圖像生成實戰、工作流應用案例、真實經驗分享以及講師自身的轉變經驗,讓你輕鬆學會使用AI提升生活和工作效率。
Thumbnail
這篇文章整理了數個實用的Prompt資源網站,幫助讀者更有效率地與AI溝通,並提升AI工具的使用效率。文章內容包含Prompt庫的使用優點、網站介紹及功能特色,以及如何善用Prompt資源網站提升思考能力。
Thumbnail
這篇文章整理了數個實用的Prompt資源網站,幫助讀者更有效率地與AI溝通,並提升AI工具的使用效率。文章內容包含Prompt庫的使用優點、網站介紹及功能特色,以及如何善用Prompt資源網站提升思考能力。
Thumbnail
隨著大型語言模型的快速發展,Prompt Engineering 已成為提升模型表現的核心技術。OpenAI 日前推出了 GPT-4.1 Prompting Guide,為開發者提供全面的提示詞改善策略,幫助充分利用 GPT-4.1 在編碼、指令遵循和長上下文處理上的進步。
Thumbnail
隨著大型語言模型的快速發展,Prompt Engineering 已成為提升模型表現的核心技術。OpenAI 日前推出了 GPT-4.1 Prompting Guide,為開發者提供全面的提示詞改善策略,幫助充分利用 GPT-4.1 在編碼、指令遵循和長上下文處理上的進步。
Thumbnail
這份 AI 學習路線圖,從 Prompt Engineering 到全自動 AI 應用開發,循序漸進,適合各個背景的人學習。
Thumbnail
這份 AI 學習路線圖,從 Prompt Engineering 到全自動 AI 應用開發,循序漸進,適合各個背景的人學習。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News