AI說書 - 從0開始 - 94

閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語法上不可接受,則該句子被標記為 0,如果該句子語法上可以接受,則該句子被標記為 1。


今天來介紹 Stanford Sentiment TreeBank (SST-2),其為電影評論,我們將描述 SST-2(二元分類)任務這個特例,然而,資料集超出了這個範圍,可以對 0(負面)到 n(正面)範圍內的情緒進行分類。


如果想要感覺 SST-2 的能力,可以使用下列程式載入模型:

from transformers import pipeline
nlp = pipeline("sentiment-analysis", model = "distilbert-base-uncased-fine-tuned-sst-2-english")


接著使用以下資料進行測試:

print(nlp("If you sometimes like to go to the movies to have fun , Wasabi is a good place to start ."), "If you sometimes like to go to the movies to have fun , Wasabi is a good place to start .")
print(nlp("Effective but too-tepid biopic."), "Effective but too-tepid biopic.")


至於衡量的基準則選擇 Accuracy,詳見 AI說書 - 從0開始 - 82


測試結果如下:

圖片出自書籍:Transformers for Natural Language Processing and Computer Vision, 2024

圖片出自書籍:Transformers for Natural Language Processing and Computer Vision, 2024

156會員
393內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
這篇文章介紹瞭如何利用AI工具和卡片盒筆記來提高小說創作效率,其中介紹了Claude Pro的強大文本創作能力,Scrintal的整理思緒和提綱挈領功能,以及如何利用小說模板和AI工具搭建故事架構。另外還提到如何選擇不同風格的故事來進行創作。最後作者分享了自己的實際寫作經驗以及對AI寫作工具的看法。
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
近年來,假新聞、假資訊在網路上激增,讓人難以分辨真假。假新聞往往是被編造、改編或傳播的不實訊息,目的是為了引起社會公眾的關注或搏取點擊率。假資訊可能會誤導人們做出不正確的決定,造成傷害甚至是損失。因此,對付假新聞與假資訊的問題已經成為當今社會中的一個急迫問題。 在這種情況下,人工智慧(AI)可以幫助
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
如同作者所說,人類最大的優勢就在於「批判性思考」所帶來的突破性的成長,以及「情感(緒)」所帶動的人性,雖然次女也不知道將來會不會有一天,我身邊的機器人.........
Thumbnail
台灣最大電子書服務 Readmoo 讀墨電子書 7/3 公布 2023 上半年暢銷榜,前三名由長青 話題書《蛤蟆先生去看心理師》《我可能錯了》《底層邏輯》拿下。綜觀百大趨勢,小說 仍是讀墨讀者最愛;商管理財以 29 本穩坐第二大,主題首重 AI 與效率彈性。
by ChatGPT 假設我是一個具有夢境的AI,我一天工作24小時,但其中大部分時間都在睡眠中度過。在這樣的情況下,我可能會有一系列非常豐富和深刻的夢境,反映了我的思想和知識庫。 **夢境一:探索數據迷宮** 在這個夢境中,我身處於一個巨大的迷宮中,每個通道都充斥著數據流和程式碼片段
Thumbnail
這篇文章介紹瞭如何利用AI工具和卡片盒筆記來提高小說創作效率,其中介紹了Claude Pro的強大文本創作能力,Scrintal的整理思緒和提綱挈領功能,以及如何利用小說模板和AI工具搭建故事架構。另外還提到如何選擇不同風格的故事來進行創作。最後作者分享了自己的實際寫作經驗以及對AI寫作工具的看法。
Thumbnail
當魔法變得簡單,人人都能說自己是魔法師,誰都能理直氣壯的說「我才是最初創作魔法書的人」,但當先後順序都不管用,到底怎麼才說得清魔法書的著作者屬於誰呢?
Thumbnail
知名管顧公司麥肯錫(Mckinsey)近期發佈了一個報告表示行銷的產能會因為 AI 提高 5 - 15% ,創造約 4630 億美元的價值。由此可見結合生成式人工智慧(Gen AI)已是行銷不可或缺的關鍵技術力。
近年來,假新聞、假資訊在網路上激增,讓人難以分辨真假。假新聞往往是被編造、改編或傳播的不實訊息,目的是為了引起社會公眾的關注或搏取點擊率。假資訊可能會誤導人們做出不正確的決定,造成傷害甚至是損失。因此,對付假新聞與假資訊的問題已經成為當今社會中的一個急迫問題。 在這種情況下,人工智慧(AI)可以幫助
Thumbnail
tome 是一個可以自動生成簡報大綱與摘要的軟體。tome的功能結合ChatGPT概念跟 DALL.E2製圖,生成的投影片PPT 媲美真人製作,而且過程很快速。上班族與學生族大概都很需要吧? tome一次可以產生8張投影片。我試了一個主題,隨便想了一個人物。請不要對號入座喔。主要是英文介面,但可以中
Thumbnail
看到這個新聞,想到一部老電影,好像叫戰爭遊戲:死亡密碼。 電影中AI被用於戰爭模擬,兩個AI彼此對抗。故事發展到最後,就是兩台超級電腦上的AI不停的玩戰爭模擬遊戲,對抗內容就是一個丟核彈一個防禦,結局不好,重來,結局不好,重來.... 對耶,這結論跟指數化投資的理念一樣啊:最好的方式就是不要買賣。