付費限定

多群組測量衡等性介紹和Mplus操作

更新 發佈閱讀 1 分鐘

當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。

Measurement invariance概念

多群組測量衡等性(Measurement invariance)是指在不同群體(如不同年齡段、不同性別、不同文化背景等)之間,測量得到的結果是一致的。即同一測量工具在不同群體中表現出的效果是一致的,且測量結果具有一致的可靠性。要進行測量衡等性之前各組都要通過CFA。

以行動支持創作者!付費即可解鎖
本篇內容共 3683 字、7 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
教育心理博士的筆記本
265會員
139內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。
2025/01/30
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
2025/01/30
當使用MLM或MLR估計法時,需使用Scaled卡方檢定計算嵌套模型之間的卡方差異,本文透過圖文說明,介紹如何使用EXCEL自動計算Scaled卡方檢定,方便且免費。
Thumbnail
2024/12/30
多層次結構方程模型(MSEM)是一種專為處理多層次資料而設計的結構方程模型,適用於具有群組結構的資料分析。本文介紹多層次結構方程模型(MSEM)的基本概念、公式、以及Mplus語法的基本結構與應用。
Thumbnail
2024/12/30
多層次結構方程模型(MSEM)是一種專為處理多層次資料而設計的結構方程模型,適用於具有群組結構的資料分析。本文介紹多層次結構方程模型(MSEM)的基本概念、公式、以及Mplus語法的基本結構與應用。
Thumbnail
2024/02/27
之前已經說過限制模型,接下來進入下一部份根據Mulder and Hamaker (2021)建議,在 RI-CLPM 中,有許多擴展模型,今天要介紹的是 Extension 1。Extension 1就是加入跨時間不變的預測或結果變項,本文將介紹此模型構造和語法。
Thumbnail
2024/02/27
之前已經說過限制模型,接下來進入下一部份根據Mulder and Hamaker (2021)建議,在 RI-CLPM 中,有許多擴展模型,今天要介紹的是 Extension 1。Extension 1就是加入跨時間不變的預測或結果變項,本文將介紹此模型構造和語法。
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
變異數和共變數分析通常有一些統計的前提假設。如果在進行這些分析時,假設沒有達到滿足,結果將有所偏誤,更可能被審稿者或口委批評。本文首先介紹如何檢測這些假設,然後提出假設不過的解決方法,並附上相關文獻佐證。
Thumbnail
變異數和共變數分析通常有一些統計的前提假設。如果在進行這些分析時,假設沒有達到滿足,結果將有所偏誤,更可能被審稿者或口委批評。本文首先介紹如何檢測這些假設,然後提出假設不過的解決方法,並附上相關文獻佐證。
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
Mplus是一種用於統計分析和結構方程模型(SEM)的軟體,通常用於處理複雜的數據分析和模型建立。以下是一些Mplus的基本語法示例,用於不同類型的分析。
Thumbnail
Mplus是一種用於統計分析和結構方程模型(SEM)的軟體,通常用於處理複雜的數據分析和模型建立。以下是一些Mplus的基本語法示例,用於不同類型的分析。
Thumbnail
本文章將介紹實務中進行HLM會需要注意的事項,包含樣本量要求、基本假設、計算解釋變異量和HLM建構策略。
Thumbnail
本文章將介紹實務中進行HLM會需要注意的事項,包含樣本量要求、基本假設、計算解釋變異量和HLM建構策略。
Thumbnail
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
Thumbnail
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
Thumbnail
題目打包法(Item Parceling)是一種統計學方法,主要用於結構方程模式(SEM)中。打包法的基本思想是將多個觀察指標打包成一個新指標,以提高模型的擬合程度。打包法有很多優點,如提高模型的擬合程度和要求樣本數減少。但也有缺點,如不適合測量模型分析。本文將簡介題目打包法之策略。
Thumbnail
題目打包法(Item Parceling)是一種統計學方法,主要用於結構方程模式(SEM)中。打包法的基本思想是將多個觀察指標打包成一個新指標,以提高模型的擬合程度。打包法有很多優點,如提高模型的擬合程度和要求樣本數減少。但也有缺點,如不適合測量模型分析。本文將簡介題目打包法之策略。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
完整標題:measure 與「量;量測;量度;量計;量數量;量寸尺;量單位;量打;盤算;量估;量比;量較;量酌;量調;量適當;量尺;量衡;量準;量器;量具;手段;手法;音樂之爲行韻律;音樂進行韻律;進行韻律;韻脚;節拍;節奏;小節;中速;慢的旋律;慢式舞步」等的轉換密碼
Thumbnail
完整標題:measure 與「量;量測;量度;量計;量數量;量寸尺;量單位;量打;盤算;量估;量比;量較;量酌;量調;量適當;量尺;量衡;量準;量器;量具;手段;手法;音樂之爲行韻律;音樂進行韻律;進行韻律;韻脚;節拍;節奏;小節;中速;慢的旋律;慢式舞步」等的轉換密碼
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News