付費限定【💎 語音辨識 - Whisper】 準確與否需要有一把 📏尺來衡量辨識率
付費限定

【💎 語音辨識 - Whisper】 準確與否需要有一把 📏尺來衡量辨識率

更新於 發佈於 閱讀時間約 7 分鐘

前面我們介紹了幾個關於Whisper的基本概念,這裡附上 🚀傳送門 ,歡迎好好閱讀一番,但我們除了學會如何用語音辨識的工具之外,「準確率」對我們來說也是一個非常重要的一環,但我們究竟應該要如何評估所謂的準確率呢? 不知道沒關係,當您看完這個篇章就能夠學會如何計算文字的「字元錯誤率」、「字詞錯誤率」...,非常值得您細細品嘗與學習,就讓我們往下一步步的完成評估準確率的程序吧!

這次的評估正確率的那把 📏尺我們會使用jiwer這一套來進行說明,它支援了多種的計算方式,包括: WER、CER、MER...等,那這些計算方式各有什麼不同呢? 就讓我們繼續看下去吧!

計算前必須知道的幾個錯誤指標

在進入到

以行動支持創作者!付費即可解鎖
本篇內容共 3192 字、0 則留言,僅發佈於💎 阿Han的Premium軟體技術棧你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
阿Han的沙龍
127會員
281內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言
avatar-img
留言分享你的想法!
阿Han的沙龍 的其他內容
精彩回顧 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務 【語音合成技術 - GPT-SoVITS】如何架設API伺服器 【語音合成技術 - GPT-SoVITS】如何微調模型 建議先閱讀我們的 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務
正常來說這種大型LLM公司都會有內容審查功能, 照理說不應該讓AI回答有害的、暴力的…等負面回應, 以Chatgpt來說經實驗後確實是如此, 但仍可以透過欺騙的方式讓它間接的回答, 有一點挖坑給AI跳的概念…。 好人形象的ChatGPT 非常聰明的閃避掉違法的問題, 看來內部已經經過嚴格的審查過程,
假設我們有一段雙聲道的音檔, 正常來說透過whisper進行語音辨識時都是以整段音檔進行辨識,但我們若想將左右聲道分離進行辨識的話就得對音檔進行音訊處理了。 怎麼做呢? 比較簡單的方式就是透過音訊處理工具將音檔進行左右聲道的分離,再獨立的進行辨識即可。 這次會將雙聲道音檔透過pydub這套音訊處理工
精彩回顧 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務 【語音合成技術 - GPT-SoVITS】如何架設API伺服器 【語音合成技術 - GPT-SoVITS】如何微調模型 建議先閱讀我們的 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務
正常來說這種大型LLM公司都會有內容審查功能, 照理說不應該讓AI回答有害的、暴力的…等負面回應, 以Chatgpt來說經實驗後確實是如此, 但仍可以透過欺騙的方式讓它間接的回答, 有一點挖坑給AI跳的概念…。 好人形象的ChatGPT 非常聰明的閃避掉違法的問題, 看來內部已經經過嚴格的審查過程,
假設我們有一段雙聲道的音檔, 正常來說透過whisper進行語音辨識時都是以整段音檔進行辨識,但我們若想將左右聲道分離進行辨識的話就得對音檔進行音訊處理了。 怎麼做呢? 比較簡單的方式就是透過音訊處理工具將音檔進行左右聲道的分離,再獨立的進行辨識即可。 這次會將雙聲道音檔透過pydub這套音訊處理工
本篇參與的主題活動
在生成式AI與大型語言模型(Large Language Model, LLM)蓬勃發展下,有許多工具可以幫助我們學習與撰寫程式,這篇文章提供了實作範例與一些經驗,分享如何使用ChatGPT(免費的GPT-3.5)協助程式語言的學習,並且完成屬於自己的程式。
前幾個禮拜,AWS 舉行 Startup Day Taiwan。想當然爾,最熱門的主題非生成式 AI (Generative AI) 莫屬。既然 AWS 有現成的工具,身為一名工程師,自然看看無妨,這篇文章算是新手開箱文,會說明如何部署一套基礎模型,並使用 AWS SDK 與其互動。
前言 我在工作中沒有什麼機會接觸到機器學習,學生時期也沒有學習過相關知識。 作為一個業餘小白,我對機器學習非常感興趣。在自學的過程中,我逐漸意識到利用機器學習可以做很多有趣的事情。 因此,我決定嘗試使用 AWS SageMaker JumpStart 來實驗文字生成式繪圖 AI ,以了解機
在生成式AI與大型語言模型(Large Language Model, LLM)蓬勃發展下,有許多工具可以幫助我們學習與撰寫程式,這篇文章提供了實作範例與一些經驗,分享如何使用ChatGPT(免費的GPT-3.5)協助程式語言的學習,並且完成屬於自己的程式。
前幾個禮拜,AWS 舉行 Startup Day Taiwan。想當然爾,最熱門的主題非生成式 AI (Generative AI) 莫屬。既然 AWS 有現成的工具,身為一名工程師,自然看看無妨,這篇文章算是新手開箱文,會說明如何部署一套基礎模型,並使用 AWS SDK 與其互動。
前言 我在工作中沒有什麼機會接觸到機器學習,學生時期也沒有學習過相關知識。 作為一個業餘小白,我對機器學習非常感興趣。在自學的過程中,我逐漸意識到利用機器學習可以做很多有趣的事情。 因此,我決定嘗試使用 AWS SageMaker JumpStart 來實驗文字生成式繪圖 AI ,以了解機