付費限定

【💎 語音辨識 - Whisper】 準確與否需要有一把 📏尺來衡量辨識率

更新於 發佈於 閱讀時間約 7 分鐘

前面我們介紹了幾個關於Whisper的基本概念,這裡附上 🚀傳送門 ,歡迎好好閱讀一番,但我們除了學會如何用語音辨識的工具之外,「準確率」對我們來說也是一個非常重要的一環,但我們究竟應該要如何評估所謂的準確率呢? 不知道沒關係,當您看完這個篇章就能夠學會如何計算文字的「字元錯誤率」、「字詞錯誤率」...,非常值得您細細品嘗與學習,就讓我們往下一步步的完成評估準確率的程序吧!

這次的評估正確率的那把 📏尺我們會使用jiwer這一套來進行說明,它支援了多種的計算方式,包括: WER、CER、MER...等,那這些計算方式各有什麼不同呢? 就讓我們繼續看下去吧!

計算前必須知道的幾個錯誤指標

在進入到

以行動支持創作者!付費即可解鎖
本篇內容共 3192 字、0 則留言,僅發佈於💎 阿Han的Premium軟體技術棧你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
118會員
267內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
阿Han的沙龍 的其他內容
我們已經介紹過關於Transformer模型的平台「【Hugging Face】Ep.1 平凡人也能玩的起的AI平台」,而操作的過程中相信也會有不少玩家會遇到這樣的狀況,因此將遇到的問題整理並分享解決方法,讓需要的朋友可以參考一下。 問題 Input type (torch.FloatTen
回顧上一個篇章「【自然語言處理NLP】初探強大的工具庫spaCy, 讓機器讀懂我們的語言」我們初步學習spaCy這套工具,在尾端進行NER時我們也發現到現有的NER模型並沒有辦法滿足我們的需求, 導致有一些實體未被識別出來, 因此這次的任務就是設法進行訓練, 讓我們想要被識別的實體可以被進行識別。
上一篇章我們有提到「【AI幫幫忙】機器如何識別我們的特徵?關鍵的Named Entity Recognition(NER)技術」, 而NER是NLP自然語言處理的一部分, 而這一個篇章我們會以實作的形式來介紹自然語言處理中非常好用的一套工具「spaCy」,spaCy被廣泛用於各種NLP任務,包括自然
QA問答是自然語言處理NLP中蠻困難的一項任務, 必須從一段文本中識別出使用者的提問,像搜尋引擎就是一種QA的應用, 從眾多的問題中找答案, 那就讓我們親手來打造一下自己專屬的QA系統吧! 找看看有哪些可用模型 在「【Hugging Face】Ep.3 前往Dataset掏金趣」我們有介紹過Hu
這次來介紹一下NLP自然語言處理中重要的一個任務「命名實體識別(Named Entity Recognition)」, 這個任務主要識別出「人名」、「地名」、「公司」…等實體, 透過這些實體辨識結果, 可以近一步的理解意圖, 甚至判斷出該文章主要在講什麼重點…等。 關於更多NER的細節歡迎閱讀: 「
前面我們介紹了「【Hugging Face】Ep.1 平凡人也能玩的起的AI平台」, 我們都知道「詞」是NLP世界中的最小單元, 關於詞的知識歡迎參考: 簡單來說,主要的目的是將文本轉換為模型可以處理的數據, But…, 他主要的任務並不是像jieba…等斷詞器一樣, 而是很單純的扮演文字與模型的橋
我們已經介紹過關於Transformer模型的平台「【Hugging Face】Ep.1 平凡人也能玩的起的AI平台」,而操作的過程中相信也會有不少玩家會遇到這樣的狀況,因此將遇到的問題整理並分享解決方法,讓需要的朋友可以參考一下。 問題 Input type (torch.FloatTen
回顧上一個篇章「【自然語言處理NLP】初探強大的工具庫spaCy, 讓機器讀懂我們的語言」我們初步學習spaCy這套工具,在尾端進行NER時我們也發現到現有的NER模型並沒有辦法滿足我們的需求, 導致有一些實體未被識別出來, 因此這次的任務就是設法進行訓練, 讓我們想要被識別的實體可以被進行識別。
上一篇章我們有提到「【AI幫幫忙】機器如何識別我們的特徵?關鍵的Named Entity Recognition(NER)技術」, 而NER是NLP自然語言處理的一部分, 而這一個篇章我們會以實作的形式來介紹自然語言處理中非常好用的一套工具「spaCy」,spaCy被廣泛用於各種NLP任務,包括自然
QA問答是自然語言處理NLP中蠻困難的一項任務, 必須從一段文本中識別出使用者的提問,像搜尋引擎就是一種QA的應用, 從眾多的問題中找答案, 那就讓我們親手來打造一下自己專屬的QA系統吧! 找看看有哪些可用模型 在「【Hugging Face】Ep.3 前往Dataset掏金趣」我們有介紹過Hu
這次來介紹一下NLP自然語言處理中重要的一個任務「命名實體識別(Named Entity Recognition)」, 這個任務主要識別出「人名」、「地名」、「公司」…等實體, 透過這些實體辨識結果, 可以近一步的理解意圖, 甚至判斷出該文章主要在講什麼重點…等。 關於更多NER的細節歡迎閱讀: 「
前面我們介紹了「【Hugging Face】Ep.1 平凡人也能玩的起的AI平台」, 我們都知道「詞」是NLP世界中的最小單元, 關於詞的知識歡迎參考: 簡單來說,主要的目的是將文本轉換為模型可以處理的數據, But…, 他主要的任務並不是像jieba…等斷詞器一樣, 而是很單純的扮演文字與模型的橋
本篇參與的主題活動
在生成式AI與大型語言模型(Large Language Model, LLM)蓬勃發展下,有許多工具可以幫助我們學習與撰寫程式,這篇文章提供了實作範例與一些經驗,分享如何使用ChatGPT(免費的GPT-3.5)協助程式語言的學習,並且完成屬於自己的程式。
前幾個禮拜,AWS 舉行 Startup Day Taiwan。想當然爾,最熱門的主題非生成式 AI (Generative AI) 莫屬。既然 AWS 有現成的工具,身為一名工程師,自然看看無妨,這篇文章算是新手開箱文,會說明如何部署一套基礎模型,並使用 AWS SDK 與其互動。
前言 我在工作中沒有什麼機會接觸到機器學習,學生時期也沒有學習過相關知識。 作為一個業餘小白,我對機器學習非常感興趣。在自學的過程中,我逐漸意識到利用機器學習可以做很多有趣的事情。 因此,我決定嘗試使用 AWS SageMaker JumpStart 來實驗文字生成式繪圖 AI ,以了解機
最近玩到了一個我覺得很新奇有趣的軟體,叫做SillyTavern。 SillyTavern是專用於創建虛擬角色的AI聊天軟體,SillyTavern是TavernAI的分支,但SillyTavern走上了自己的路,加進了許多額外功能,並且仍在積極的持續更新中。 然後,可以色色!
「Prompt」這個詞是提示的意思,但為什麼需要提示呢? 當AI不理解我們的時候,勢必給出的回應並非準確的為我們解答,因此一個好的提示是非常重要的,就如同我們人與人之間的溝通一樣,如何將自己心裡的疑惑轉化成好的問題來提問對方,讓對方理解,進而給出一個明確的答案,這就是提示(Prompt)的重要性,對
在生成式AI與大型語言模型(Large Language Model, LLM)蓬勃發展下,有許多工具可以幫助我們學習與撰寫程式,這篇文章提供了實作範例與一些經驗,分享如何使用ChatGPT(免費的GPT-3.5)協助程式語言的學習,並且完成屬於自己的程式。
前幾個禮拜,AWS 舉行 Startup Day Taiwan。想當然爾,最熱門的主題非生成式 AI (Generative AI) 莫屬。既然 AWS 有現成的工具,身為一名工程師,自然看看無妨,這篇文章算是新手開箱文,會說明如何部署一套基礎模型,並使用 AWS SDK 與其互動。
前言 我在工作中沒有什麼機會接觸到機器學習,學生時期也沒有學習過相關知識。 作為一個業餘小白,我對機器學習非常感興趣。在自學的過程中,我逐漸意識到利用機器學習可以做很多有趣的事情。 因此,我決定嘗試使用 AWS SageMaker JumpStart 來實驗文字生成式繪圖 AI ,以了解機
最近玩到了一個我覺得很新奇有趣的軟體,叫做SillyTavern。 SillyTavern是專用於創建虛擬角色的AI聊天軟體,SillyTavern是TavernAI的分支,但SillyTavern走上了自己的路,加進了許多額外功能,並且仍在積極的持續更新中。 然後,可以色色!
「Prompt」這個詞是提示的意思,但為什麼需要提示呢? 當AI不理解我們的時候,勢必給出的回應並非準確的為我們解答,因此一個好的提示是非常重要的,就如同我們人與人之間的溝通一樣,如何將自己心裡的疑惑轉化成好的問題來提問對方,讓對方理解,進而給出一個明確的答案,這就是提示(Prompt)的重要性,對
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
題目敘述 Minimum Deletions to Make String Balanced 給定一個只會有包含'a'b或'b'的輸入字串s。 每次操作可以任選一個字元刪除。 請問最少需要多少次操作,才會使得所有的'b'都在'a'後面? 測試範例 Example 1: Input: s
Thumbnail
輔音的響亮程度,決定他在口語中的獨立性。那麼,是什麼決定輔音的大小聲呢?哪些輔音比較大聲?哪些輔音比較小聲?輔音要怎麼獨立說出呢?
Thumbnail
雖然現在寫測驗錯別字扣分比重不高,但總會一定程度影響閱卷老師的印象分數,所以如何避免錯別字出現十分重要,其中「的、地、得」這三個字發音相同,都念做「˙ㄉㄜ」,然後總是會有同學分不清這三個的差別。因此,這篇文章希望能夠幫助大家分清楚三者的差別,未來寫文章的時候也儘量不要搞混喔!
Thumbnail
了解並緊密遵循雅思口說測驗的評分標準是提高口說能力並取得好成績的重要一步。然而事實上,並不是很多考生有對這個部份下足功夫。當考生對評分項目不了解的時候,他們可能會錯過重要細節,無法準確地
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
Thumbnail
什麼樣的詞可以用?不能用? 老師到底需不需要把這些中國用語一一挑出來?
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
題目敘述 Minimum Deletions to Make String Balanced 給定一個只會有包含'a'b或'b'的輸入字串s。 每次操作可以任選一個字元刪除。 請問最少需要多少次操作,才會使得所有的'b'都在'a'後面? 測試範例 Example 1: Input: s
Thumbnail
輔音的響亮程度,決定他在口語中的獨立性。那麼,是什麼決定輔音的大小聲呢?哪些輔音比較大聲?哪些輔音比較小聲?輔音要怎麼獨立說出呢?
Thumbnail
雖然現在寫測驗錯別字扣分比重不高,但總會一定程度影響閱卷老師的印象分數,所以如何避免錯別字出現十分重要,其中「的、地、得」這三個字發音相同,都念做「˙ㄉㄜ」,然後總是會有同學分不清這三個的差別。因此,這篇文章希望能夠幫助大家分清楚三者的差別,未來寫文章的時候也儘量不要搞混喔!
Thumbnail
了解並緊密遵循雅思口說測驗的評分標準是提高口說能力並取得好成績的重要一步。然而事實上,並不是很多考生有對這個部份下足功夫。當考生對評分項目不了解的時候,他們可能會錯過重要細節,無法準確地
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
Thumbnail
什麼樣的詞可以用?不能用? 老師到底需不需要把這些中國用語一一挑出來?
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現