向量內積、方向導數與梯度:從數學到機器學習

更新於 發佈於 閱讀時間約 3 分鐘


終於講到向量內積和方向導數,這會是之後梯度(Gradient),梯度下降是人工智慧訓練模型的重要概念。了解這個概念之前要先複習「向量內積」的公式

向量內積

內積公式的兩種寫法,我個人喜歡用國中理化的方式理解:做功

向量內積的意義:

raw-image

如果 cos⁡θ=1,兩向量方向完全相同,內積等於向量大小的乘積。所以同向

raw-image

圖片截圖自:https://youtu.be/8tTh-SIhZW0?si=zDDftp6lHIw-MoQF

內積的計算方法

內積還可以用分量來計算:

raw-image
raw-image



方向導數與梯度的關係

先記住這兩個概念

想像你站在一個山丘上,周圍的地形起伏不平。計算梯度向量先看哪個最陡, 根據向量的長短,再計算該方向的變化速率。

  • 生活化比喻:在地圖上梯度可以幫助你找到山坡最陡的上坡路,而方向導數告訴你沿著每個小徑的變化情況。
  • 在機器學習:使用梯度下降法(Gradient Descent),我們可以找到函數的最低點(比如最佳模型參數)。

梯度向量(Gradient Vector)

  • 表示函數在某一點上,往哪個方向增長最快。
  • 梯度向量的大小(模長)代表增長最快時的速率,而方向則是最陡增長的方向。

方向導數(Directional Derivative)

  • 表示函數在某一點,沿著某一特定方向的變化速率。
  • 如果方向正好與梯度一致,方向導數就等於梯度的大小。

-----------------------------------------------------------------

梯度的數學公式

梯度是一個向量,表示函數在每個自變數方向上的偏導數值:

raw-image
  • 再複習偏導數:意思是「函數 f 對 x1的變化速率」,假設其他變數 x2,x3...... 都不變。

Gradients and Partial Derivatives

以這個圖來說,就是看 Z 在對 Y。

raw-image
透明的線是梯度

透明的線是梯度

方向導數的數學公式

raw-image
  • u:單位方向向量,表示方向。
  • cos⁡θ:梯度方向與給定方向 u 之間的夾角的餘弦值。

二變數函數是U型 (參考 ChatGPT)

raw-image

以上是我為學習AI理論前再複習數學觀念的筆記,如有錯誤請不吝指正~

留言
avatar-img
留言分享你的想法!
avatar-img
越南放大鏡 X 下班資工系
14會員
65內容數
雙重身份:越南放大鏡 X 下班資工系 政大東南亞語言學系是我接觸越南語的起點,畢業後找越南外派工作的生活跟資訊時,發現幾乎都是清單式的分享,很難身歷其境。所以我希望「越南放大鏡」可以帶讀者看到更多細節和深入的觀察。 - 下班資工系則是自學資工系的課程內容,記錄實際操作的過程,學習理論的過程。希望可以跟讀者一起成長。
2025/04/24
本系列文章將循序漸進地介紹 JavaScript 的核心概念,從基礎語法到進階應用,例如非同步程式設計和 React 基礎。內容淺顯易懂,並使用生活化的比喻幫助讀者理解,搭配程式碼範例,適合 JavaScript 初學者學習。
Thumbnail
2025/04/24
本系列文章將循序漸進地介紹 JavaScript 的核心概念,從基礎語法到進階應用,例如非同步程式設計和 React 基礎。內容淺顯易懂,並使用生活化的比喻幫助讀者理解,搭配程式碼範例,適合 JavaScript 初學者學習。
Thumbnail
2025/04/21
本文介紹行動通訊網路的演進歷史,從1G到5G,並說明ITU與3GPP在制定通訊規格上的重要角色,以及5G的三大關鍵應用場景:URLLC、eMBB和mMTC。
Thumbnail
2025/04/21
本文介紹行動通訊網路的演進歷史,從1G到5G,並說明ITU與3GPP在制定通訊規格上的重要角色,以及5G的三大關鍵應用場景:URLLC、eMBB和mMTC。
Thumbnail
2025/04/11
這篇文章說明網路的七層模型、IP 位址、通訊埠、TCP/UDP 協定、HTTP 協定、HTTP 狀態碼以及 WebSocket,並解釋它們之間的關係與互動方式。文中包含許多圖表和範例,幫助讀者理解這些網路概念。
Thumbnail
2025/04/11
這篇文章說明網路的七層模型、IP 位址、通訊埠、TCP/UDP 協定、HTTP 協定、HTTP 狀態碼以及 WebSocket,並解釋它們之間的關係與互動方式。文中包含許多圖表和範例,幫助讀者理解這些網路概念。
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
本文回顧向量內積、方向導數與梯度的概念,並以生活化的比喻和數學公式說明它們在微積分和機器學習中的應用,尤其是在梯度下降法中尋找函數最低點的過程。
Thumbnail
本文回顧向量內積、方向導數與梯度的概念,並以生活化的比喻和數學公式說明它們在微積分和機器學習中的應用,尤其是在梯度下降法中尋找函數最低點的過程。
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
数学对于计算机编程来说重要性是毋庸置疑的,更何况我们现在不仅仅是编程,而是走在「人工智能」的路上。可以说,数学应该是最重要的基础。 我们在学习AI的过程当中可能会遇到的一些关于数学方面的一些东西,比如说线性代数里面的矩阵运算,比如说求导,还有一些概率统计,图论方面的一些东西。
Thumbnail
数学对于计算机编程来说重要性是毋庸置疑的,更何况我们现在不仅仅是编程,而是走在「人工智能」的路上。可以说,数学应该是最重要的基础。 我们在学习AI的过程当中可能会遇到的一些关于数学方面的一些东西,比如说线性代数里面的矩阵运算,比如说求导,还有一些概率统计,图论方面的一些东西。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
通常討論標準差都會用面積的方式來解釋,不過有天我想也許可以用空間來解釋。 但這樣解釋對於標準差和變異數的理解似乎並不完整,可以當個有趣的觀點看看就好。
Thumbnail
連同上兩篇文章,我們介紹了機械學習裡的基石,並踩著這些基石了解了改變資料餵送方式,以及動態改變學習率或在更新項中加入動量的方法。我們可以看到這些梯度下降的變化,主要是解決兩個問題:梯度震盪和非最佳的局部最小值造成學習停滯不前的問題。在這篇文章中,我們著重動量和 Adam 的方法來達成克服以上的問題。
Thumbnail
連同上兩篇文章,我們介紹了機械學習裡的基石,並踩著這些基石了解了改變資料餵送方式,以及動態改變學習率或在更新項中加入動量的方法。我們可以看到這些梯度下降的變化,主要是解決兩個問題:梯度震盪和非最佳的局部最小值造成學習停滯不前的問題。在這篇文章中,我們著重動量和 Adam 的方法來達成克服以上的問題。
Thumbnail
梯度下降學習法雖然是一個有效的最佳化方法,然而因為梯度本身屬於局部變化,因此有三個陷阱,而未能到達全域最小值的命運。他們分別是:局部最小值, 初始值和病態的二階導數矩陣。我們將解釋這些最佳化陷阱的成因,以及提出相對應的方法。這些方法包括了使用 mini-batch,加入處罰項和 early stop
Thumbnail
梯度下降學習法雖然是一個有效的最佳化方法,然而因為梯度本身屬於局部變化,因此有三個陷阱,而未能到達全域最小值的命運。他們分別是:局部最小值, 初始值和病態的二階導數矩陣。我們將解釋這些最佳化陷阱的成因,以及提出相對應的方法。這些方法包括了使用 mini-batch,加入處罰項和 early stop
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
感知器  (perceptron) 利用逐一探訪訓練資料,以更多的訓練例子被正確的分類為目標,來更新任意初始的權重。然而該方法難以延伸到非線性的分類平面,所以以梯度為主的最佳化演算法取而代之,並發展出更多的應用。在本篇中,除了介紹梯度下降法外,亦會討論如何利用學習曲線圖診斷一個機械模型,並對症下藥。
Thumbnail
感知器  (perceptron) 利用逐一探訪訓練資料,以更多的訓練例子被正確的分類為目標,來更新任意初始的權重。然而該方法難以延伸到非線性的分類平面,所以以梯度為主的最佳化演算法取而代之,並發展出更多的應用。在本篇中,除了介紹梯度下降法外,亦會討論如何利用學習曲線圖診斷一個機械模型,並對症下藥。
Thumbnail
在上文透過探討生活中變化率,延伸到數學中兩點斜率公式。本文將以另一個角度切入,分上、下兩篇詮釋數學斜率的幾何意義,上篇將從日常生活中的斜坡與剖面圖,引入直線、斜率,直角座標平面,從圖形解釋兩點斜率的基本幾何意義。
Thumbnail
在上文透過探討生活中變化率,延伸到數學中兩點斜率公式。本文將以另一個角度切入,分上、下兩篇詮釋數學斜率的幾何意義,上篇將從日常生活中的斜坡與剖面圖,引入直線、斜率,直角座標平面,從圖形解釋兩點斜率的基本幾何意義。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News