付費限定相依因子變異數分析簡介和SPSS操作
付費限定

相依因子變異數分析簡介和SPSS操作

更新於 發佈於 閱讀時間約 1 分鐘

之前都是獨立樣本,本文將介紹相依單因子變異數分析簡介和SPSS操作。本次變異數分析探討的是重複測量(repeated measure)的情形,當受試者重複測量的時候,應採用相依樣本的變異數分析方式。



raw-image

簡介

重複測量實驗是指受試者(subject)重複參與一因子(factor)內每一層次 (level)。即重複測量實驗的數據違反了一般變異數分析的個案數值獨立的要 求,所以需要一些新的統計檢定方法,能解決個案數值非獨立的問題-相依單因子變異數。例如:比較某班同學期初、期中、期末共三次測驗之測驗分數是否有不同。


變異數為球型的前提假設

以行動支持創作者!付費即可解鎖
本篇內容共 1247 字、6 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
心理博士的筆記本
239會員
134內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言
avatar-img
留言分享你的想法!
心理博士的筆記本 的其他內容
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法