古有草船借箭,今有AI借鏡

更新於 發佈於 閱讀時間約 2 分鐘
投資理財內容聲明

AI浪潮下的訊號開發 提到可將AI訓練好的模型產生之訊號當成一個商品來匯入,今天將手把把示範如何把這訊號進行匯入成商品,並在策略撰寫時,可引用至此訊號,當為輔助資訊。

Excel的訊號

Excel的訊號

此表格為筆者使用的CNN模型訊號,在此利用開盤價、最高價、最低價、收盤價的技巧,讓多方趨勢的日期呈現紅K、空方趨勢的日期呈現黑K、盤整趨勢,則讓四個價格都為同一個價格呈現一橫線,方便在進行策略訊號檢視時,方便觀察。

在MC的QuoteManager中,新增商品

在MC的QuoteManager中,新增商品

在MC的QuoteManager中選擇「商品」選單中的「新增商品」,在點選「手動」來加入自行設計的商品。


在QuoteManager 新增商品

在QuoteManager 新增商品

在數據源的選項記得選取「ASCII Mapping」,然後輸入商品代碼,在此筆者就以訓練模型的方法為命名「CNN_Signal」。

匯入歷史資料

匯入歷史資料

完成商品新增後,在商品代碼按下滑鼠右鍵,就可以使用「ASCII」的格式,匯入由AI模型所產生的訊號,其資料內容如文章開始的格式:日期、開盤價、最高價、最低價、收盤價、成交量,這樣的順序,以「逗號」隔開各個欄位。

解析資料的預覽

解析資料的預覽

選取已產生好的CSV檔,可看到匯入工具將資料解析成表格方式呈現,在此可檢視資料是否正確,若正確,則按下「確定」即可開始匯入。

編輯資料工具來確認資料

編輯資料工具來確認資料

匯入後,可在商品代碼按右鍵,點選「編輯資料」即會跳出資料編輯的對話框,可由此檢視資料匯入的結果。

上圖為五分鐘K線圖,下圖為CNN訊號

上圖為五分鐘K線圖,下圖為CNN訊號

接下來利用大數據時代,資料為王 所示範如何在一個圖表視窗中,加入多個商品的方式,將台指期連續月的五分鐘行情為副圖#1,而CNN_Signal這個商品則加入副圖#2,就形成了上圖所示的圖表視窗。

在匯入前的資料,稍微在四價中設計成紅、黑K的價格,在副圖#2中就可見到是一根長紅K或長黑K,方便檢視,有些文章為了方便起見,會將四價都設為同一個價格,則在圖上就會顯示成一橫線(就如同行情中,四價均相同的顯示方式)。

到此為止已經將訊號匯入至圖表中,在策略寫作時,也可使用「欄位 of Data2」的方式來存取這個訊號,下篇將示範在策略撰寫時,如何結合此一資料數列。







留言
avatar-img
留言分享你的想法!
股市觀察家-avatar-img
發文者
2023/11/22
古有草船借箭,今有AI借鏡 - 訊號撰寫提及了這篇文章,趕快過去看看吧!
avatar-img
股市觀察家的沙龍
28會員
55內容數
金融市場入門新手所必知的基本知識
2023/11/30
今日的標題出自於邱吉爾,一個合格的策略上線並非程式交易的終點,而回測不出合格的策略,也非末日,在程式交易這條路上,繼續前行的勇氣是絕不可缺少的,在策略開發上,能成功上線的機率可能不到1%,其餘的99% 就當成打怪練等,累積經驗,當有足夠的經驗後,任何簡易的指標,都可稍加變化後,成為一支合格的策略。
Thumbnail
2023/11/30
今日的標題出自於邱吉爾,一個合格的策略上線並非程式交易的終點,而回測不出合格的策略,也非末日,在程式交易這條路上,繼續前行的勇氣是絕不可缺少的,在策略開發上,能成功上線的機率可能不到1%,其餘的99% 就當成打怪練等,累積經驗,當有足夠的經驗後,任何簡易的指標,都可稍加變化後,成為一支合格的策略。
Thumbnail
2023/11/29
一般的投資人進入程式交易領域大都是由一些公開課程學得,然後就拿授課老師給的程式來開始回測,找出一個較佳的績效後,就開始上線交易,剛開始時,可能績效還不錯,但久了,會發現某幾次的交易好像被針對了,常常一進場後,很快就剛好打到停損後,行情就又往程式的方向走。 除了回測參數外,還有人會開始改變K線的週期
Thumbnail
2023/11/29
一般的投資人進入程式交易領域大都是由一些公開課程學得,然後就拿授課老師給的程式來開始回測,找出一個較佳的績效後,就開始上線交易,剛開始時,可能績效還不錯,但久了,會發現某幾次的交易好像被針對了,常常一進場後,很快就剛好打到停損後,行情就又往程式的方向走。 除了回測參數外,還有人會開始改變K線的週期
Thumbnail
2023/11/28
開盤跳空(不管往上或往下),當日行情大都有一個大波段的走勢,但跳空之後,是持續往跳空方向走,或是反方向回補跳空缺口,將成為當日開盤後的判斷重點,只要掌握到對的方向,當日將有非常大的獲利。 在此介紹「市場輪廓圖(Market Profile)」的觀念,市場輪廓圖將成交價位與成交量加以堆疊,成為類似分
Thumbnail
2023/11/28
開盤跳空(不管往上或往下),當日行情大都有一個大波段的走勢,但跳空之後,是持續往跳空方向走,或是反方向回補跳空缺口,將成為當日開盤後的判斷重點,只要掌握到對的方向,當日將有非常大的獲利。 在此介紹「市場輪廓圖(Market Profile)」的觀念,市場輪廓圖將成交價位與成交量加以堆疊,成為類似分
Thumbnail
看更多
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
本研究使用了盤中逐筆成交資料(Tick-by-tick Data)來進行股票價格的預測,並討論了馬可夫鏈模型和擴散核模型在這方面的應用。研究結果表明,大多數股票的未來三秒價格可以在少於22個狀態中找到,顯示了交易價格的低不確定性。此外,研究還發現波動性更大和價格更高的股票更難以準確預測。
Thumbnail
本研究使用了盤中逐筆成交資料(Tick-by-tick Data)來進行股票價格的預測,並討論了馬可夫鏈模型和擴散核模型在這方面的應用。研究結果表明,大多數股票的未來三秒價格可以在少於22個狀態中找到,顯示了交易價格的低不確定性。此外,研究還發現波動性更大和價格更高的股票更難以準確預測。
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
在 古有草船借箭,今有AI借鏡 寫到如何將CNN訓練好的模型訊號以一個新商品的方式匯入成歷史資料,藉此當為進場訊號的輔助,本文就簡單示範,當匯入訊號後,策略的程式如何撰寫。 首先描述這個模型的特性及策略的設計,CNN模型以「市場輪廓圖」為基礎訓練圖形,以「日」為單位,預測接下來的行情是否發生反轉,
Thumbnail
在 古有草船借箭,今有AI借鏡 寫到如何將CNN訓練好的模型訊號以一個新商品的方式匯入成歷史資料,藉此當為進場訊號的輔助,本文就簡單示範,當匯入訊號後,策略的程式如何撰寫。 首先描述這個模型的特性及策略的設計,CNN模型以「市場輪廓圖」為基礎訓練圖形,以「日」為單位,預測接下來的行情是否發生反轉,
Thumbnail
在AI浪潮下的訊號開發 提到可將AI訓練好的模型產生之訊號當成一個商品來匯入,今天將手把把示範如何把這訊號進行匯入成商品,並在策略撰寫時,可引用至此訊號,當為輔助資訊。 此表格為筆者使用的CNN模型訊號,在此利用開盤價、最高價、最低價、收盤價的技巧,讓多方趨勢的日期呈現紅K、空方趨勢的日期呈現黑K
Thumbnail
在AI浪潮下的訊號開發 提到可將AI訓練好的模型產生之訊號當成一個商品來匯入,今天將手把把示範如何把這訊號進行匯入成商品,並在策略撰寫時,可引用至此訊號,當為輔助資訊。 此表格為筆者使用的CNN模型訊號,在此利用開盤價、最高價、最低價、收盤價的技巧,讓多方趨勢的日期呈現紅K、空方趨勢的日期呈現黑K
Thumbnail
2022/11 ChatGPT 3.5 正式對外發表,全球掀起了一陣AI風潮,各國也持續投入AI的軍備競賽,平常不會接觸AI的人,也開始學著如何跟ChatGPT溝通,有人用GPT來提升工作效率,但也有人是想看GPT的笑話,一直想辦法讓他回得出錯誤答案,一試出錯誤答案,就急著分享給朋友說GPT還不實用
Thumbnail
2022/11 ChatGPT 3.5 正式對外發表,全球掀起了一陣AI風潮,各國也持續投入AI的軍備競賽,平常不會接觸AI的人,也開始學著如何跟ChatGPT溝通,有人用GPT來提升工作效率,但也有人是想看GPT的笑話,一直想辦法讓他回得出錯誤答案,一試出錯誤答案,就急著分享給朋友說GPT還不實用
Thumbnail
在交易千萬別見樹不見林 中示範如何在同一張圖表上加入不同週期的行情走勢,本篇將對MultiCharts初體驗-函式撰寫、MultiCharts初體驗-訊號撰寫 的程式進行改寫,讓程式可以讀取到多週期的K線資料。 在MC中可以用Data1、Data2、⋯⋯、Data99的指定方式,來存取圖表中的數列
Thumbnail
在交易千萬別見樹不見林 中示範如何在同一張圖表上加入不同週期的行情走勢,本篇將對MultiCharts初體驗-函式撰寫、MultiCharts初體驗-訊號撰寫 的程式進行改寫,讓程式可以讀取到多週期的K線資料。 在MC中可以用Data1、Data2、⋯⋯、Data99的指定方式,來存取圖表中的數列
Thumbnail
不管是主觀交易還是程式交易,投資人都不該只見樹不見林,在主觀交易者判斷行情時,通常都會一分鐘K線圖,當成進出場時機的判斷點,但除了一分K線圖外,都會在旁邊再放上三十分K線圖及日K線圖作為大趨勢的判斷之用,避免自己只專注於一分K的行情波動,而忽略了大趨勢的方向,造成原本要順勢交易的想法卻因短週期K線的
Thumbnail
不管是主觀交易還是程式交易,投資人都不該只見樹不見林,在主觀交易者判斷行情時,通常都會一分鐘K線圖,當成進出場時機的判斷點,但除了一分K線圖外,都會在旁邊再放上三十分K線圖及日K線圖作為大趨勢的判斷之用,避免自己只專注於一分K的行情波動,而忽略了大趨勢的方向,造成原本要順勢交易的想法卻因短週期K線的
Thumbnail
這篇論文是用來交易ETF,利用cnn神經網路去預測買點跟賣點由於CNN吃的是圖片輸入更精確來說是一個二維矩陣輸入因此論文作者將ETF的開高低收去計算出15種技術指標乘上15天剛好就可以作成15X15的矩陣(當作圖片)餵給CNN模型當作輸入
Thumbnail
這篇論文是用來交易ETF,利用cnn神經網路去預測買點跟賣點由於CNN吃的是圖片輸入更精確來說是一個二維矩陣輸入因此論文作者將ETF的開高低收去計算出15種技術指標乘上15天剛好就可以作成15X15的矩陣(當作圖片)餵給CNN模型當作輸入
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News