邏輯回歸(Logistic Regression)

更新於 發佈於 閱讀時間約 2 分鐘

Logistic Regression(邏輯迴歸)是一種監督式機器學習演算法,主要用於二元分類問題。它與線性迴歸不同,目的是預測事件發生的機率(概率值介於0到1之間),並根據概率將輸入資料分類到兩個類別之一。Logistic Regression利用sigmoid函數(邏輯斯函數)將線性組合的輸入特徵轉換為介於0和1之間的概率。

數學模型定義為:

raw-image


其中,p 是事件發生的概率,w 為權重向量,x 是輸入特徵,b 是偏差項。模型輸出概率值後,通常以0.5做為閾值將結果分類為0或1。

Logistic Regression的主要特點包括:

  • 專門解決分類問題,尤其是二分類問題。 假設自變量與log-odds(勝算比的對數)呈線性關係。 模型參數可用於解釋特徵與結果的關聯性。 算法簡單、計算效率高,且結果容易理解和解釋。 可擴展至多分類(多項式)和有序分類問題。

實際應用層面,Logistic Regression廣泛用於醫療診斷、金融信用評估、市場營銷、社會科學等領域,幫助預測是否發生某事件(例如,客戶是否流失、病人是否患病)。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
18會員
480內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/09/04
Linear Support Vector Machine (Linear SVM) 是一種監督式機器學習演算法,用於二元分類問題,目標是找到一條或一個超平面(hyperplane)以線性方式將兩個類別的數據點分開。這個超平面會最大化兩個類別中最接近該超平面的資料點(稱為支持向量,support v
2025/09/04
Linear Support Vector Machine (Linear SVM) 是一種監督式機器學習演算法,用於二元分類問題,目標是找到一條或一個超平面(hyperplane)以線性方式將兩個類別的數據點分開。這個超平面會最大化兩個類別中最接近該超平面的資料點(稱為支持向量,support v
2025/09/04
Frequency Encoding(頻率編碼)是將類別變數中的每個類別,依其在資料集中出現的頻率(次數比例)轉換成數值的一種方法。這種方法的核心做法是計算每個類別在樣本中出現的頻率,然後用該頻率值替代原本的類別標籤。 Frequency Encoding的特點包括: 將類別資料轉換為頻率數值,
2025/09/04
Frequency Encoding(頻率編碼)是將類別變數中的每個類別,依其在資料集中出現的頻率(次數比例)轉換成數值的一種方法。這種方法的核心做法是計算每個類別在樣本中出現的頻率,然後用該頻率值替代原本的類別標籤。 Frequency Encoding的特點包括: 將類別資料轉換為頻率數值,
2025/09/04
Binary Encoding是一種用於機器學習中分類變數編碼的技術,它先將每個類別標籤轉換為整數,然後將這些整數轉換成二進位(binary)數字,最後將二進位的每一位拆分成獨立的欄位。例如,有8個類別時,普通的One-Hot Encoding需要8欄位,而Binary Encoding只需3欄,因
2025/09/04
Binary Encoding是一種用於機器學習中分類變數編碼的技術,它先將每個類別標籤轉換為整數,然後將這些整數轉換成二進位(binary)數字,最後將二進位的每一位拆分成獨立的欄位。例如,有8個類別時,普通的One-Hot Encoding需要8欄位,而Binary Encoding只需3欄,因
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
資料前處理(Data Preprocessing)中的重要角色-缺失值處理。從檢查、刪除到填充缺失值,以及插值法和機器學習算法的應用方法。Pandas 缺失值處理基礎方法、進階填充缺失值、鐵達尼號存活預測資料集的示例和機器學習算法填補缺失值方法的介紹與使用。
Thumbnail
資料前處理(Data Preprocessing)中的重要角色-缺失值處理。從檢查、刪除到填充缺失值,以及插值法和機器學習算法的應用方法。Pandas 缺失值處理基礎方法、進階填充缺失值、鐵達尼號存活預測資料集的示例和機器學習算法填補缺失值方法的介紹與使用。
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
Thumbnail
本文將展示使用不同激活函數(ReLU 和 Sigmoid)的效果。 一個簡單的多層感知器(MLP)模型來對 Fashion-MNIST 資料集進行分類。 函數定義 Sigmoid 函數 Sigmoid 函數將輸入壓縮到 0到 1 之間: 特性: 輸出範圍是 (0,1)(0, 1)(0,1
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 2中,可以使用的分類變量進行Multiple group分析。接下來,擴展 RI-CLPM 的另一種方法是為每個使用多個指標測量,本文將簡介兩種Multiple indicators模型。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 2中,可以使用的分類變量進行Multiple group分析。接下來,擴展 RI-CLPM 的另一種方法是為每個使用多個指標測量,本文將簡介兩種Multiple indicators模型。
Thumbnail
邏輯運算子 它們在許多情境下都是程式語言中重要的工具,用於進行條件判斷和控制流程 在日常中總會遇到有些需要思考判斷的問題,比如要買東西,就會考慮到CP值,東西要好且要便宜,就是and的概念,如果在一些比較複雜的狀況,例如想晚餐吃什麼,就會想火鍋或燒烤都行,這就是or的概念。
Thumbnail
邏輯運算子 它們在許多情境下都是程式語言中重要的工具,用於進行條件判斷和控制流程 在日常中總會遇到有些需要思考判斷的問題,比如要買東西,就會考慮到CP值,東西要好且要便宜,就是and的概念,如果在一些比較複雜的狀況,例如想晚餐吃什麼,就會想火鍋或燒烤都行,這就是or的概念。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News