付費限定

潛在類別/剖面/混合分析操作2:事後比較

更新於 發佈於 閱讀時間約 7 分鐘
當我們透過潛在類別/剖面/混合分析找出最佳組數後,研究者可能會好奇,這些組數在其它變項是否有差異?事後比較就顯得相當重要,本文將簡介潛在類別/剖面/混合分析事後比較。
當我們透過
研究者可能會好奇,潛在構念(這裡簡稱C)中的組數在其它變項是否有差異?事後比較就顯得相當重要。過去大多研究者採用變異數分析,然而這樣做可能會忽視淺在分組的不確定性(也就是分類誤差),所以我們在這裡介紹近年學者廣泛使用的事後比較方法。

C=>類別依變項

以行動支持創作者!付費即可解鎖
本篇內容共 2922 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
你的見面禮 Premium 閱讀權限 只剩下0 小時 0
avatar-img
225會員
128內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
Mplus 是一套統計軟體,可用於各種心理學和社會科學研究。它具有強大的功能,可用於進行複雜的統計分析,例如潛在變數分析、多層次分析和縱向分析。要開始使用 Mplus,您需要先下載並安裝軟體。安裝 Mplus 後,您就可以開始編寫 Mplus 語法。Mplus 語法是用來告訴軟體如何進行分析的程式碼
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
縱貫式中介模型(Longitudinal Mediation Model)是研究隨著時間的改變,變數X如何通過中介變數M影響變數Y的統計模型。它是長期觀察和分析數據的有用工具,可以揭示X和Y之間的關係以及中介變數M在這個關係中扮演的角色。本文將介紹縱貫式中介模型Mplus操作
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
Mplus 是一套統計軟體,可用於各種心理學和社會科學研究。它具有強大的功能,可用於進行複雜的統計分析,例如潛在變數分析、多層次分析和縱向分析。要開始使用 Mplus,您需要先下載並安裝軟體。安裝 Mplus 後,您就可以開始編寫 Mplus 語法。Mplus 語法是用來告訴軟體如何進行分析的程式碼
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
縱貫式中介模型(Longitudinal Mediation Model)是研究隨著時間的改變,變數X如何通過中介變數M影響變數Y的統計模型。它是長期觀察和分析數據的有用工具,可以揭示X和Y之間的關係以及中介變數M在這個關係中扮演的角色。本文將介紹縱貫式中介模型Mplus操作
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
你可能也想看
Google News 追蹤
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
(→)(⟷)(▲)(※)(Z) Phisomer 哲學語境分析工具:女性
本篇文章介紹了一種簡單但正確的評估方法,以投資評估總分和本益比為依據,給出了公司的投資評級,並以臺積電和NVDA作為範例。文章還提到了演算法的重要性,以及執行長數學的思路。建議投資者試用這種投資策略來輔助自己的投資。
Thumbnail
選擇數學A或數學B應根據學生的興趣和未來的職業規劃來決定。 選擇數學A適合數理能力強且有志於理工科發展的學生, 而選擇數學B則適合對人文社科或藝術設計有興趣的學生。
說明性別如球社會計量的目標、一般性運用原則、延伸與提醒、問句舉例。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
男人跟女人不只是生理構造,內心層面上也因為DNA的演化而有很大的差異。因此也影響了擇偶決策的選擇。 本文將告訴你三個最主要的不同,而造成重大差異。 1、理性選擇與感性選擇 2、人生重點目標不同 3、「擇偶複製」(mate choice copying)
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
(→)(⟷)(▲)(※)(Z) Phisomer 哲學語境分析工具:女性
本篇文章介紹了一種簡單但正確的評估方法,以投資評估總分和本益比為依據,給出了公司的投資評級,並以臺積電和NVDA作為範例。文章還提到了演算法的重要性,以及執行長數學的思路。建議投資者試用這種投資策略來輔助自己的投資。
Thumbnail
選擇數學A或數學B應根據學生的興趣和未來的職業規劃來決定。 選擇數學A適合數理能力強且有志於理工科發展的學生, 而選擇數學B則適合對人文社科或藝術設計有興趣的學生。
說明性別如球社會計量的目標、一般性運用原則、延伸與提醒、問句舉例。
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
男人跟女人不只是生理構造,內心層面上也因為DNA的演化而有很大的差異。因此也影響了擇偶決策的選擇。 本文將告訴你三個最主要的不同,而造成重大差異。 1、理性選擇與感性選擇 2、人生重點目標不同 3、「擇偶複製」(mate choice copying)
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
我們常把研究分成量化與質性兩種不同的方法(當然不止這兩種方法),其中量化分析主要在討論變數與變數的關係,而質性分析則在變數間在的互動過程與事件。因此通常在進行質性研究時,我們需要收集大量田野調查或訪談資料。做過訪談的人都知道,訪談後需要反覆的聆聽訪談錄音並將其轉化為訪談逐字稿,這是一個大工程,還好現