數據分析專案的「預估」思維

更新於 2024/06/13閱讀時間約 5 分鐘

數據分析師的工作包羅萬象,而在這些多樣化的任務中,「預估」是我蠻喜歡的一種專案類型,思考該做哪些假設才可以做出合理預估的過程蠻有趣的。

在這篇文章中,我會分享兩個我曾參與的預估專案,以及我的思考脈絡,希望可以對你們有所幫助。

專案一:預估歐洲區域的營收

專案背景

當時分析團隊的其中一個目標是找出可以優化用戶旅程(user journey)的方向。

由於我們公司是一家 B2B 企業,用戶旅程大致如下:

客戶訪問我們的網站 → 填寫意願表單 → 與業務預約會議 → 確認需求 → 付費

在分析用戶旅程的數據時,我們發現,儘管我們的主要客戶來自北美,但歐洲客戶的人均消費並不低於北美客戶,顯示他們是具有潛力的高價值客戶。

然而,歐洲客戶從完成意願表單到預約會議的「預約會議率」明顯低於北美客戶。

這個現象雖然對我們來說相當合理,因為我們的業務主要集中在美洲時區,歐洲客戶難以找到合適的預約時間,但考慮到歐洲客戶的高價值,讓我們開始思考,是否該為歐洲時區的客戶增加更多可預約會議的時間?如果這樣做,是否能帶來顯著的營收增長?

預估方法

專案的核心問題是:「如果歐洲客戶有足夠的可預約會議時段,會帶來多少營收?」,當這個營收夠大,我們就可以考慮增加歐洲客戶的可預約時段。

在思考這個問題時,我的思考脈絡是:

有足夠的可預約會議時段 → 預約會議率提升 → 和業務討論到需求的人數增加 → 營收增加

當問題被經過這樣的轉換後,要回答這個問題就變得簡單,只需要估計歐洲客戶的「合理預約會議率」,就可以往後計算出因應預約會議率提升,額外帶來的營收增長有多少。

而在估計歐洲客戶的合理預約會議率時,我們團隊選擇直接採用北美客戶的現有數據,作為歐洲客戶的合理預約會議率。

有了這個數值,再結合已知的歐洲客戶數量及人均付費金額,就可以估算出優化預約會議率後的歐洲客戶營收。

學習點

這個預估專案並不難,但需要注意的是「為什麼使用北美的預約會議率來預估歐洲客戶的預約會議率是合理的?」

這個做法背後隱含了一個假設:「北美客戶和歐洲客戶在與業務人員預約會議的行為上沒有太大差異」。

因為有了這個假設,我們才能使用北美客戶的預約會議率來預估歐洲客戶的預約會議率。

這點可以再往下延伸至「分群方法背後的假設」,在做分析時的每一種分群方式(性別、年齡、居住地區…等), 每一種分群方式背後都隱含著一個假設:「這個分群方法下的不同群體,在你想觀測的數據中,會有不同的特徵」。

當這個假設成立的時候,這個分群方式才是有意義的。

舉年齡來說:

在做付費的分析時,拆分年齡是個好方法,因為不同年齡層有不同的消費力及消費動機,因此在看數據時,將不同年齡層的數據拆開來看,可以讓我們對問題有更深刻的理解。

但對於一些年齡不會產生差距的題目來說(例如:人的手指數量),在分析時就沒必要拆分年齡,因為「這個分群方法下的不同群體,在你想觀測的數據中,會有不同的特徵」這個假設不成立,就算真的拆了,也高機率不會看到數據差異。

雖然手指數量是一個很爛的分析例子,但一時沒想到好的案例,所以先頂著用。


專案二:評估新店開幕對於既有店舖的影響

專案背景

當時的專案目標是想幫助一個實體零售商分析他們的業績表現。

他們在北部地區新開了第三間店,現在想知道這間新店的開幕是否對附近的兩間既有店舖造成了營收的影響。

預估方法

主要分析方法是比較「既有兩間店在不開新店情況下的預估營收」與「實際營收」之間的差距。如果實際營收低於預期營收,則可能表示新店搶走了一部分客戶。

在預估「既有兩間店在不開新店情況下的營收」時,較簡單的方法是以「前一年營收」結合「在沒有新店開幕情況下的預估成長率」來計算。預估成長率可以透過歷史成長率來預測。例如,如果過去每年業績成長10%,則預估今年也會成長10%。

但由於分析期間有「外在因素」影響到品牌,降低了消費者購買意願,因此如果我們直接用歷史成長率去估計,可能會高估,因此需要將「外在因素」納入預估。

為了考慮「外在因素」,我們將「在沒有新店開幕情況下的預估成長率」拆解為「受到外在因素影響的南部店舖成長率」以及「南部和北部成長率的相對關係」。在我們假設南部和北部的成長率有穩定關係的情況下(例如:南部成長20%,北部成長率通常為一半,即10%),即可根據南部成長率和兩者間的關係,預估受到外在影響下北部的營收成長率。

具體案例

以下是一個具體的例子:

  1. 南部店舖受外在因素下的實際成長率:25%
  2. 北部店鋪預期成長率(假設為南部成長率的一半):12.5%
  3. 北部既有兩店在不開新店的預期營收:200萬美元 * 1.125 = 225萬美元
  4. 北部既有兩店的實際營收:220萬美元
  5. 潛在損失評估:225萬美元 - 220萬美元 = 5萬美元

學習點

這個專案的挑戰在於如何將「外在因素」納入預估算法中。因為我們很難估計外在因素究竟對成長率會有多大影響,因此我們改變方式,不去預估外在因素帶來的影響,而是直接拿「已經受影響的南部店舖表現」去預估北部店舖表現,就可以把外在因素加到預估算法中。

在透過南部店舖成長率去預估北部店舖成長率時,我們基於的假設是「兩個地區的成長率有穩定關係」,且「外在因素對北部與南部的影響相同」,不會破壞兩者間的關係。

如果上述兩個假設有任一個不成立,這樣的預估方式可能就會失準。


看到這裡你可能有發現,「假設」這個詞在整篇文章出現了很多次,而「假設」確實也是我認為在預估過程中很重要的事。

有了假設,我們才能確定數值範圍的合理性。

同時,在團隊內部討論預估結果時,可以基於假設討論其合理性,而非單純依數字大小拍腦袋決定過高過低,會讓討論更有效率。


謝謝你看到這邊,如果你看完文章後有任何想法或建議,都很歡迎在留言區提出分享!或是歡迎加我的 Linkedin 與我交流

avatar-img
1會員
10內容數
紀錄從事數據分析工作的心得與生活所學
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
數據分析師的雜談 的其他內容
好的數據分析師要能做到釐清合作方需求、拆解問題並用數字詮釋問題、解釋分析結果以及寫出好維護的 SQL
好的數據分析師要能做到釐清合作方需求、拆解問題並用數字詮釋問題、解釋分析結果以及寫出好維護的 SQL
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
專業會計師在數據分析方面的專長和應用對於公司的成立、運營以及風險管理至關重要。在這個過程中,峻誠稅務記帳士事務所等專業機構提供了重要支持,讓會計師能夠更好地應用其數據分析能力。 首先,會計師在公司登記和工商登記等程序中扮演關鍵角色。他們需要根據公司的情況和業務需求,進行詳細的數據分析,確定公司的組
Thumbnail
本文揭示當前工業領域的一場無聲革命:智慧製造。在引言中,我們探討了智慧製造如何開啟生產力新紀元,隨後深入分析大數據如何加速生產過程中的創新與效率,成為本次革命的核心動力。從學術研究到現實應用,本文探討了智慧製造領域的發展脈絡,以及學界與業界共同推進的不可逆轉動能。
Thumbnail
標題:自媒體經營必懂7大專有名詞,讓你輕鬆掌握數據分析 前言 隨著社群媒體的普及,自媒體已成為許多人創業或副業的選擇。然而,要想在自媒體圈中脫穎而出,除了創意內容外,更重要的是懂得數據分析。透過數據分析,我們可以了解受眾的喜好、行為,進而調整內容策略,提高成效。以下是自媒體經營中必懂的8大專有
Thumbnail
在職場上懂得運用數據的人,都活成了怎麼樣了?工作上能做出嚴謹與正確的分析,凡事都用數據說話。你也是這樣認為嗎?如果你的答案是肯定的,我想或許你小看了數據的價值。
Thumbnail
Python is a so powerful tool in data science and this course is helpful for reviewing basic concepts. Even though I still have a long way to my future
Thumbnail
從「類型」作為出發點,輔以加以針對 Netflix 台灣站與韓國站做比較,也確實看出一些不同之處,包含其實 Netflix 韓國站確實有相當多實境與綜藝內容,而韓國群眾也喜歡使用 Netflix 收看,個人就覺得這個相當有趣的。
Thumbnail
我之所以大膽的把股價預測稱之為「最強」,因為這本身就是一個可以變現的專案,並且可以同時累積數據分析及投資操作經驗,在投資與程式設計同時躍升為顯學的時代,把這兩條學習路徑融合在一起,似乎自然而然,也合情合理。當然,這條路的學習成本非常高,但翻山越嶺之後的美景也同樣讓人心神嚮往。
Thumbnail
通膨的概念 你今天買一罐飲料「冷山茶王」30元,明年變成36元,通膨成長就是+20%。 今年常聽到通膨的議題,主要是世界各國印鈔,無限的貨幣搶有限的資產,就會讓資產價格變高,所以股市、房地產、原物料都隨之起舞,萬物上漲當然就會通膨,通膨之後就會用各種手段來抑制,升息是其中一種。......
Thumbnail
文、圖/浪LIVE提供   台灣直播產業近幾年蓬勃發展,在5G時代掀起通訊革命的推波助瀾下,直播已成為銳不可擋的火熱主流媒體。直播領導品牌浪LIVE與數據分析專家網路溫度計日前正式合作,推出「網路口碑直播主排行榜」,將直播主分成「生活風格」、「舞蹈」、「藝術」、「音樂」、「顏值」等五大
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
轉職數據分析師是一項需要長期努力的過程。對於文組生來說,由於缺乏數學、統計、程式設計等方面的基礎,在轉職過程中往往會面臨更多的挑戰。因此,制定一個合理的學習計劃,對於提高轉職成功率至關重要。 以下是一些規劃轉職數據分析師學習進度表的建議: 第一步:確認你的優勢和劣勢 在開始學習之前,我們首先要
專業會計師在數據分析方面的專長和應用對於公司的成立、運營以及風險管理至關重要。在這個過程中,峻誠稅務記帳士事務所等專業機構提供了重要支持,讓會計師能夠更好地應用其數據分析能力。 首先,會計師在公司登記和工商登記等程序中扮演關鍵角色。他們需要根據公司的情況和業務需求,進行詳細的數據分析,確定公司的組
Thumbnail
本文揭示當前工業領域的一場無聲革命:智慧製造。在引言中,我們探討了智慧製造如何開啟生產力新紀元,隨後深入分析大數據如何加速生產過程中的創新與效率,成為本次革命的核心動力。從學術研究到現實應用,本文探討了智慧製造領域的發展脈絡,以及學界與業界共同推進的不可逆轉動能。
Thumbnail
標題:自媒體經營必懂7大專有名詞,讓你輕鬆掌握數據分析 前言 隨著社群媒體的普及,自媒體已成為許多人創業或副業的選擇。然而,要想在自媒體圈中脫穎而出,除了創意內容外,更重要的是懂得數據分析。透過數據分析,我們可以了解受眾的喜好、行為,進而調整內容策略,提高成效。以下是自媒體經營中必懂的8大專有
Thumbnail
在職場上懂得運用數據的人,都活成了怎麼樣了?工作上能做出嚴謹與正確的分析,凡事都用數據說話。你也是這樣認為嗎?如果你的答案是肯定的,我想或許你小看了數據的價值。
Thumbnail
Python is a so powerful tool in data science and this course is helpful for reviewing basic concepts. Even though I still have a long way to my future
Thumbnail
從「類型」作為出發點,輔以加以針對 Netflix 台灣站與韓國站做比較,也確實看出一些不同之處,包含其實 Netflix 韓國站確實有相當多實境與綜藝內容,而韓國群眾也喜歡使用 Netflix 收看,個人就覺得這個相當有趣的。
Thumbnail
我之所以大膽的把股價預測稱之為「最強」,因為這本身就是一個可以變現的專案,並且可以同時累積數據分析及投資操作經驗,在投資與程式設計同時躍升為顯學的時代,把這兩條學習路徑融合在一起,似乎自然而然,也合情合理。當然,這條路的學習成本非常高,但翻山越嶺之後的美景也同樣讓人心神嚮往。
Thumbnail
通膨的概念 你今天買一罐飲料「冷山茶王」30元,明年變成36元,通膨成長就是+20%。 今年常聽到通膨的議題,主要是世界各國印鈔,無限的貨幣搶有限的資產,就會讓資產價格變高,所以股市、房地產、原物料都隨之起舞,萬物上漲當然就會通膨,通膨之後就會用各種手段來抑制,升息是其中一種。......
Thumbnail
文、圖/浪LIVE提供   台灣直播產業近幾年蓬勃發展,在5G時代掀起通訊革命的推波助瀾下,直播已成為銳不可擋的火熱主流媒體。直播領導品牌浪LIVE與數據分析專家網路溫度計日前正式合作,推出「網路口碑直播主排行榜」,將直播主分成「生活風格」、「舞蹈」、「藝術」、「音樂」、「顏值」等五大