RAG和Fine-Tuning有什麼不同?深入解析兩大方法的應用與差異

更新於 發佈於 閱讀時間約 3 分鐘

檢索增強生成(Retrieval-Augmented Generation, RAG)和微調(Fine-Tuning)是兩種提升大型語言模型性能的核心技術。然而,它們在實現方式上有著根本性的差異。這篇文章將詳細探討這兩種方法的特性、應用場景以及在AI領域的影響。

增強語言模型的兩大方法:RAG與Fine-Tuning

隨著AI技術的快速發展,如何提升大型語言模型在特定應用場景中的效果成為了關鍵挑戰。RAGFine-Tuning是目前最受關注的兩種解決方案。它們雖然能夠互補,但各自的應用範疇和技術路徑截然不同。

什麼是RAG(檢索增強生成)?

RAG結合了預訓練語言模型與外部數據檢索機制,使模型能夠動態整合實時數據,進一步提升其生成能力。

RAG的運作原理

  1. 數據檢索:利用查詢機制從外部數據集或知識庫中檢索相關訊息。
  2. 數據整合:將檢索到的外部數據與原始提示輸入模型,生成包含更多上下文的回應。

RAG的應用場景

  • 新聞摘要與實時問答:需要最新資訊的應用。
  • 研究協助:為用戶提供精準的數據引用。
  • 專業報告生成:處理初始訓練中未接觸到的資料點。

RAG通過動態訪問外部訊息,能夠應對模型初始訓練中無法預測的場景,特別適合需要時效性與靈活性的任務。

什麼是Fine-Tuning(微調)?

微調是針對特定任務或數據集,進一步訓練預訓練模型的過程,使其更精準地適應目標任務。

Fine-Tuning的運作原理

  1. 數據集準備:利用特定任務的標註數據集。
  2. 參數調整:在模型預訓練基礎上進行小規模調整。
  3. 短期訓練:相比預訓練,微調耗時更短且資源需求更低。

Fine-Tuning的應用場景

  • 情感分析:分析用戶評論的情緒傾向。
  • 法律文件解析:處理專業術語和特定文本格式。
  • 醫療報告生成:生成針對性強的專業內容。

Fine-Tuning的優勢在於能讓模型深度專注於特定任務,提升其表現精度。

RAG與Fine-Tuning的對比

以下是RAGFine-Tuning的核心差異:

RAG與Fine-Tuning的對比

RAG與Fine-Tuning的對比


總結:如何選擇適合的方法?

檢索增強生成(RAG)與微調(Fine-Tuning)是提升語言模型性能的兩種重要策略。

  • RAG適合需要動態更新數據的場景,能生成更具時效性與通用性的內容。
  • Fine-Tuning則在專業領域表現卓越,能應對高度定制化的需求。

兩者並非互斥,結合使用可以實現更強大的AI應用。例如,RAG可用於實時訊息檢索,而微調則用於專業數據處理,形成完美互補的解決方案。

Intellicon Solutions(智慧方案股份有限公司)是一家專注於為企業提供生成式 AI 解決方案的領先供應商。我們的核心產品「AI Agent Hub」旨在協助企業將最新的 AI 技術整合到營運與服務流程中,提升效率與競爭力。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
開源軟體與閉源軟體是軟體開發領域的兩種主要模型,各有優勢與挑戰。本文深入探討兩者的差異、優缺點、適用場景及選擇因素,協助您在專案中做出最佳選擇。
開源軟體與閉源軟體是軟體開發領域的兩種主要模型,各有優勢與挑戰。本文深入探討兩者的差異、優缺點、適用場景及選擇因素,協助您在專案中做出最佳選擇。
你可能也想看
Google News 追蹤
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
生成式SEO,簡稱GenSEO,指的是以生成式AI為基礎,執行搜尋引擎最佳化。通過利用大型語言模型(LLM),GenSEO能夠實現多項任務,包含大型語言模型(LLM)為基礎的關鍵字研究(keyword research)、文章大綱生成、文章段落生成、圖片生成、圖表(chart)生成、表格資料生成、影
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
ChatGPT 是 OpenAI 開發的大型語言模型,以其強大的生成能力和對話能力而聞名。 ChatGPT 的訓練過程主要分為兩個階段:預訓練和微調。 微調使用了 RLHF(Reinforcement Learning from Human Feedback)技術,可以有效地提高模型生成內容的質量。
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
生成式SEO,簡稱GenSEO,指的是以生成式AI為基礎,執行搜尋引擎最佳化。通過利用大型語言模型(LLM),GenSEO能夠實現多項任務,包含大型語言模型(LLM)為基礎的關鍵字研究(keyword research)、文章大綱生成、文章段落生成、圖片生成、圖表(chart)生成、表格資料生成、影
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
ChatGPT 是 OpenAI 開發的大型語言模型,以其強大的生成能力和對話能力而聞名。 ChatGPT 的訓練過程主要分為兩個階段:預訓練和微調。 微調使用了 RLHF(Reinforcement Learning from Human Feedback)技術,可以有效地提高模型生成內容的質量。