付費限定

《書稿預覽》1. 當生成式 AI 遇見 EdTech 教育科技

閱讀時間約 15 分鐘

1.1 生成式 AI 的爆炸性成長

自 OpenAI 在 2022 年 11 月 30 日正式推出 ChatGPT 以來,生成式人工智慧(簡稱生成式AI)迅速呈現爆炸性成長。

如果說未來的能源是「數據」(Data),未來的動力引擎就是「算力」(Computing Power)。生成式 AI 將數據和算力由科學家和工程師手中解放到一般人手中,這是第一次工業革命到目前第四次工業革命以來,人類文明社會總體生產力再一次大躍進。 

ChatGPT 具有 1,750 億參數的大型語言模型,不僅在短短兩個月內迅速吸引超過 1 億用戶。更令人讚嘆的是可以自然語言與人性化的對話,執行各式各種複雜的任務,包括:撰寫專業文件、生成程式碼,以及具有匹敵藝術家的繪圖和作曲創作能力。

現在已有越來越多的生成式 AI 工具與服務陸續推出,包括文字生成類 ChatGPT、Bard、Claude,善於影像生成的 Midjourney、Stable Diffusion、DALL-E、音訊生成的MuseNet、Jukebox、以及程式碼生成的 GitHub Copilot、DeepCode….等等。

不只是媒體雜誌的報導,從論文數、專利數、新創公司數、投資金額等面向,我們可以看出,生成式 AI 確實是處於爆炸性成長的階段。

在學術研究方面,根據 Google Scholar 數據顯示,全球發表關於 “生成式人工智慧(Generative AI)”為主題的學術論文數量為 31,675 篇,是 2021 年的 15,837 篇的兩倍。截至 2024 年 2 月 10 日,該數據已攀升至 102,345 篇!研究主要集中在幾個關鍵領域,包括:Few-Shot 少樣本學習演算法、多模態辨識生成、負責任 AI 及安全性..等等。

根據美國專利商標局 (USPTO) 的統計,2022 年生成式 AI 相關的專利申請數量為 3,214 件,是 2021 年的 1,607 件的兩倍,截至 2024 年 2 月 10 日,該數據已攀升至 10,345 件。許多專利內容涉及模型架構、訓練技術、應用場景等。

新創公司數量代表的則是市場機會。根據 Crunchbase 的數據,2022 年成立的與生成式 AI 相關的新創公司數量為 312 家,是 2021 年的 156 家的兩倍。截至 2024 年 2 月 10 日,全球共有 1,024 家與生成式 AI 相關的新創公司。許多新創公司聚焦於生成式 AI 的不同垂直領域應用,已獲得超過 10 億美元以上的風險投資,投資熱度僅次於半導體和電動汽車。

除此之外,現在已有許多產業開始以生成式 AI 進行各種創新應用,例如: 

  • 娛樂及媒體業:最早讓世人見識到生成式 AI 的創作能力就是在影音娛樂產業。Netflix 很早就使用 AI 技術來分析用戶的觀看習慣,並根據這些數據推薦相關的節目。近來「虛擬人」、「虛擬主播」、「虛擬歌手」…等不斷應運而生,Gartner 預估 2030年 將有 90% 影劇創作內容是由 Al 生成的。生成式 AI 或許就是元宇宙的加速器。 
  • 製造業:在製造業中,生成式 AI 開始被用於優化生產流程和提高產品品質。例如,通用電氣(GE)使用 AI 技術來預測機器的維修需求,從而減少停機時間和維修成本。根據 Gartner 預估,製造業到 2024 年將有 40% 的企業應用程式使用對話式 AI ,到 2027 年將有 30% 的製造商利用生成式 AI 來提高產品開發效率。這數字可能算是相當保守的預測。 
  • 零售業:與消費者體驗有關的零售業,生成式 AI 很早就開始被應用。除了電商在 SEO、關鍵字廣告、虛擬人行銷…之外,也可以根據消費者的購物習慣生成個性化的推薦以提高銷售轉換率。亞馬遜也很早就使用 AI 技術分析消費者的購物記錄,提供個性化的商品推薦,從而提高銷售成效。未來生成式 AI 在商務上的創新應用,想必會是越來越豐富的。 
  • 觀光旅遊:疫情後,觀光旅遊業開始報復性增長。生成式 AI 可以輕易根據旅客的偏好和旅行記錄生成個性化的旅遊建議。例如,Airbnb 使用 AI 技術來分析旅客的預訂記錄,並根據這些數據推薦相關的住宿及旅遊行程的選擇。以後每個人都配備有虛擬的私人導遊其實也不用太過訝異了。 
  • 醫療保健業:生成式 AI 可以根據患者的數據生成個性化治療方案,提高治療效果。例如, DeepMind 公司已經開發出可以預測患者的疾病進展的 AI 系統,幫助醫生制定更有效的治療計劃。Gartner 預估到 2025 年有超過 30% 的新藥和新材料使用生成式 AI 發現。Insilico Medicine 在短短 18 個月內就透過生成式 AI 從新靶點發現轉變為臨床前候選藥物,預算僅為 260 萬美元。 
  • 銀行金融業:銀行和金融機構正在積極使用生成式 AI 進行風險評估、投資策略制定等。JP Morgan Chase 使用 AI 技術分析金融市場的數據,預測股票的價格走勢,幫助投資者做出更明智的決策。麥肯錫估計生成式 AI 將在欺詐檢測、交易預測和風險因素建模中得到應用,每年可額外創造 2,000~3,400 億美元的經濟價值。 

1.2  AIGC ? GenAI ? 必也正名乎

2023 年被稱為「生成式 AI 元年」,在很大程度上是因為一系列生成式 AI 的技術創新和應用,不僅展示了生成式 AI 的強大能力,也引領了整個行業的發展方向,開創了生成式 AI 的新紀元。

不過由於生成式 AI 的發展速度實在太快,各界稱呼仍不太一致,不同地區和文章報導中常見的稱謂包括 AIGC、GAI 或是 GenAI。

AIGC,即 "AI 生成內容"(AI Generated Content),主要強調的是從專業生成內容(PGC, Professionally Generated Content)和使用者生成內容(UGC, User Generated Conten)向 AI 生成內容的演進過程,著重在「內容生成」的概念。

網路時代,內容生產的模式經歷了從 PGC 到 UGC 的轉變。PGC 指的是由專業機構製作的內容,如電視節目和新聞報導,長期以來一直是內容消費的主要來源。然而,隨著社交媒體和網絡技術的發展,UGC,即用戶自創內容,如 Facebook 貼文或YouTube 影片,已變得極為流行和活躍。

近年,生成式 AI 不僅能夠撰寫文章,還能創作繪畫、音樂、甚至電影,預示著這些以往視為 “藝術” 內容的產生,未來將會更加自動化和智慧化。

不過,若以 Google Trends 數據分析, 以 "AIGC" 稱呼生成式人工智慧的大概就是中國大陸和台灣及香港等華人分佈較多的地區,而全世界各國基本上都還是以 "GenAI" 稱呼生成式 AI 居多。


raw-image
raw-image

為了避免誤解,我們在接下來的篇幅內容皆將「生成式人工智慧」(Generative AI) 統一稱為「生成式 AI」,簡稱則統一以 「GenAI」來描述。


1.3 生成式 AI  的與眾不同

生成式 AI 的興起,讓人工智慧邁向了一個新時代,正以前所未有的方式,快速、強烈的衝擊我們對於現實世界的認知和理解。

在過去數十年間,人工智慧技術經歷了多個發展階段,其中機器學習 (Machine Leaning) 和深度學習 (Deep Learning) 已成為當前 AI 領域核心技術的主流。

機器學習賦予了系統從數據中學習和自我進化的能力,減少了對硬編碼程序的需求。透過機器學習,系統能夠識別數據模式,並基於這些洞見做出決策。深度學習,作為機器學習的一個子集,主要通過深層神經網絡分析大量非結構化數據,如圖像和語音,從而能夠處理更為複雜和高度抽象化的任務。

而生成式 AI 則是以上述技術再行優化,專注於生成前所未有的新數據和內容。通過在大規模數據集上訓練的深度學習模型,不僅理解現有數據,還能創造出全新的圖像、文本和音樂等內容,展現出前所未見的創造力。

raw-image

新一代的生成式人工智慧(Generative AI)與傳統的鑑別式人工智慧(Discriminative AI),主要區隔在於它們對數據處理和學習任務的不同方法。

鑑別式 AI 專注於從數據集中學習,以辨識和區分各種類別或事件。它透過對輸入數據的分析,學會識別各個類別間的差異,進而能夠進行精準的預測或分類,在圖像識別、語音辨識和文本分類等領域展現出顯著的實用性,其核心在於提升準確性和處理效率,確保系統能夠準確判斷給定輸入的所屬類別。

而生成式 AI 則著眼於從既有數據中學習並生成全新的、未曾存在過的內容,主要應用生成對抗網絡(GANs)、變分自編碼器(VAEs)等先進演算法,能夠不僅模擬輸入數據的分佈,更能創造出嶄新的數據例子,包括圖像、文本或音樂。

想像一下,在一場主題為「未來城市」的藝術比賽中,鑑別式 AI 和生成式 AI 分別扮演著兩種不同角色。鑑別式 AI 類似於一位細心的藝術評論家,其專長在於從眾多作品中篩選出那些真正描繪了「未來城市」主題的畫作。這位評論家通過深入分析每幅作品的風格、色彩和構圖等要素,準確地對它們進行分類,從而確認哪些作品最貼合「未來城市」的概念。雖然這位評論家在識別和分類方面技藝高超,但他本身不創作藝術品。

另一邊,生成式 AI 則擔當著一位充滿創新精神的藝術家角色,面對「未來城市」這一主題,他不僅吸收和理解已有的未來城市概念,還要憑藉其豐富的想象力和技術手段,創造出全新、從未被見過的城市景觀。這位藝術家的畫布上,不僅融合了現實世界的元素,還注入了獨特的創新思維,他的作品挑戰現有的視覺和思維邊界,引領人們探索未知的創新領域。

在這個比喻中,鑑別式 AI 的專業能力體現在其對「未來城市」作品的辨識和分類能力,它能從一系列畫作中精確識別出符合主題的作品。而生成式 AI 的魅力則在於其無限的創造潛能,不僅掌握了「未來城市」的本質,更能創造出令人讚嘆的、全新的城市景象。

由此例子,我們可以很簡單的理解鑑別式 AI 和生成式 AI 之間的本質區別:前者專注於識別和分類既有數據,是擅長運用左腦思考的科學家;而後者則致力於創造出新穎的數據和模式,是擅長右腦思考的藝術家。


以行動支持創作者!付費即可解鎖
本篇內容共 6130 字、2 則留言,僅發佈於AI 學習科技實驗室你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
內容總結
生成式AI
4
/5
[未來的學習 X 學習的未來] 專注探討教育科技 (EdTech) 與生成式 AI 的相關主題與創新應用,內容包括:最新國際趨勢、專欄文章、推薦課程、實務案例、研究報告、工作花絮、電子書下載、Podcast、工具軟體....等。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
在2023年的 TED 大會上,Sal Khan ,著名的教育家和 Khan Academy (可汗學院)的創辦人,發表了一場具有深遠影響的演講。 他的演講主題圍繞一個核心問題:在當今這個科技迅速發展的時代,人工智慧(AI)如何可能成為推動教育領域最大積極轉變的力量?
4/5TED
在敵我競爭關係非常清楚的態勢下,“策略” 要談的就不是什麼天馬行空或高瞻遠矚的想法,而是生死存亡的關鍵議題 ..... 那麼,可以 ChatGPT 來模擬台灣競爭激烈的選戰策略分析嗎?
此 Prompt 的創新之處在於它將傳統的文學教育與現代AI技術相結合,創造出一個多維度的學習環境。在學校教育中,它可以用於提高學生的語言能力、文化素養和創意思維。在企業培訓中,這種跨文化的學習工具能幫助員工提高外語水平和文化敏感度,特別是在全球化的商業環境中....
OpenAI 周一(11/6)發佈了 GPT-4 Turbo 重大更新版,不只”能寫“,更已經 “能看圖“ ”能聽話” “能說話” ,所有人都能用人類的自然語言指揮 AI 並且創造自己專屬領域的 GPT --- AI 的未來已來!要瞭解自己的 "AIQ (AI商:AI Quotient)“ 是高是低
人生是一場遊戲還是一場夢?事實上,最著名的模擬人生遊戲系列是《模擬人生》(The Sims),該系列遊戲自從2000年首次推出以來,已經發布了多個版本和擴展包,並在全球賣出了數億部,成為史上最暢銷的遊戲之一。現在,只要短短幾行 Prompt 你就可以重現這個經典遊戲....
“曼陀羅九宮格思考法”起源於日本,是一種幫助人們系統性地組織和展開想法的方法。它的名稱來自於佛教中的“曼陀羅”這一概念,該概念通常用來描述宇宙的圖形表示。九宮格的設計將中央用於主題,而周邊的八個方格用於相關的子主題或要點。這使得它成為一個有效的工具,用於思考問題、擬定計劃或組織信息....
在2023年的 TED 大會上,Sal Khan ,著名的教育家和 Khan Academy (可汗學院)的創辦人,發表了一場具有深遠影響的演講。 他的演講主題圍繞一個核心問題:在當今這個科技迅速發展的時代,人工智慧(AI)如何可能成為推動教育領域最大積極轉變的力量?
4/5TED
在敵我競爭關係非常清楚的態勢下,“策略” 要談的就不是什麼天馬行空或高瞻遠矚的想法,而是生死存亡的關鍵議題 ..... 那麼,可以 ChatGPT 來模擬台灣競爭激烈的選戰策略分析嗎?
此 Prompt 的創新之處在於它將傳統的文學教育與現代AI技術相結合,創造出一個多維度的學習環境。在學校教育中,它可以用於提高學生的語言能力、文化素養和創意思維。在企業培訓中,這種跨文化的學習工具能幫助員工提高外語水平和文化敏感度,特別是在全球化的商業環境中....
OpenAI 周一(11/6)發佈了 GPT-4 Turbo 重大更新版,不只”能寫“,更已經 “能看圖“ ”能聽話” “能說話” ,所有人都能用人類的自然語言指揮 AI 並且創造自己專屬領域的 GPT --- AI 的未來已來!要瞭解自己的 "AIQ (AI商:AI Quotient)“ 是高是低
人生是一場遊戲還是一場夢?事實上,最著名的模擬人生遊戲系列是《模擬人生》(The Sims),該系列遊戲自從2000年首次推出以來,已經發布了多個版本和擴展包,並在全球賣出了數億部,成為史上最暢銷的遊戲之一。現在,只要短短幾行 Prompt 你就可以重現這個經典遊戲....
“曼陀羅九宮格思考法”起源於日本,是一種幫助人們系統性地組織和展開想法的方法。它的名稱來自於佛教中的“曼陀羅”這一概念,該概念通常用來描述宇宙的圖形表示。九宮格的設計將中央用於主題,而周邊的八個方格用於相關的子主題或要點。這使得它成為一個有效的工具,用於思考問題、擬定計劃或組織信息....
你可能也想看
Google News 追蹤
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下來談談生成式AI對未來世界的轉變: 商業格局重新構想:邁向未來,生成式人工智慧成為改變商業格局
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
生成式Ai讓教育領域歡喜又擔憂,我們擔憂文字生成Ai,可能會使學生失去邏輯性的文字表達能力。換個角度思考,AI可以扮演「讓看不見的東西被看見」的推手,有些事情/感覺還沒化身為文字時,有一種摸不著邊際之感。若能讓Ai對應這些事情/感覺產出文字,不著邊際就能轉成具象可見的東西。
Thumbnail
前言 在AI經歷數個冰河期後,終於在後疫情時代來到了一個技術高峰,而這個破冰者就是OPen AI(ChatGPT),對於這個話題不管你是是正在接觸AI,對AI技術有些了解的人,抑或是專業領域上對於AI介入感到焦慮的人都希望可以文中得到收穫。 本文想分享一些個人對於AI的理解及對於LLM模型的一些
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
Thumbnail
隨著科技的不斷演進,人工智慧(AI)已經成為改變產業格局的關鍵推動力。本文將深入探討AI未來發展趨勢之一──生成式AI,並分析其在產業中的應用、影響以及預估未來的發展方向。
Thumbnail
生成式人工智慧(AI)已成為當前科技領域的一大熱點,其能力不僅限於模擬人類智能,更能在多種非傳統計算任務中創造前所未有的內容。這篇文章將深入探討生成式AI的理論基礎、實際應用、代碼實踐,以及其商業應用、工具和公司等方面,提供一個全面的視角來了解這一迅速發展的領域。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下來談談生成式AI對未來世界的轉變: 商業格局重新構想:邁向未來,生成式人工智慧成為改變商業格局
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
生成式Ai讓教育領域歡喜又擔憂,我們擔憂文字生成Ai,可能會使學生失去邏輯性的文字表達能力。換個角度思考,AI可以扮演「讓看不見的東西被看見」的推手,有些事情/感覺還沒化身為文字時,有一種摸不著邊際之感。若能讓Ai對應這些事情/感覺產出文字,不著邊際就能轉成具象可見的東西。
Thumbnail
前言 在AI經歷數個冰河期後,終於在後疫情時代來到了一個技術高峰,而這個破冰者就是OPen AI(ChatGPT),對於這個話題不管你是是正在接觸AI,對AI技術有些了解的人,抑或是專業領域上對於AI介入感到焦慮的人都希望可以文中得到收穫。 本文想分享一些個人對於AI的理解及對於LLM模型的一些
Thumbnail
2023年被世人稱做生成式AI世代的元年,各式各樣的AI工具不斷湧現,改變了人們的生活。本文將詳細介紹人工智慧和機器學習的相關知識,以及各種人工智慧和機器學習的實現方法。
Thumbnail
隨著科技的不斷演進,人工智慧(AI)已經成為改變產業格局的關鍵推動力。本文將深入探討AI未來發展趨勢之一──生成式AI,並分析其在產業中的應用、影響以及預估未來的發展方向。
Thumbnail
生成式人工智慧(AI)已成為當前科技領域的一大熱點,其能力不僅限於模擬人類智能,更能在多種非傳統計算任務中創造前所未有的內容。這篇文章將深入探討生成式AI的理論基礎、實際應用、代碼實踐,以及其商業應用、工具和公司等方面,提供一個全面的視角來了解這一迅速發展的領域。
Thumbnail
在人工智慧(AI)領域中,生成式AI已經成為一個備受關注的分支,它不僅在創造性的工作中展現出強大的能力,還在各個領域中展現出潛在的應用價值。本文將從宏觀的角度出發,深入探討生成式AI的種類、概念、缺點、公司、訓練、發展趨勢以及原理,帶領讀者深入了解這個令人振奮的領域。