上古漢語的邏輯結構 046

更新於 發佈於 閱讀時間約 1 分鐘

1.0 從函數到函算語法


raw-image

1.1 句子成份

1.2 函數概念小史

1.3 弗雷格的函數概念

在歐洲,系統地做元數學 (metamathetics)41 工作的第一人為戈特洛布‧弗雷格 (Gottlob Frege: 1848-1925)。

弗雷格是第一個對古典數學做全面反省工作的數學家。

弗雷格對公元十九世紀的數學工作者嚴重不滿,認為他們做的只是計算工作,對知識沒有貢獻,因為歷來數學工作者都只不過在計算結果,對所使用的工具,譬如很多常用的基本概念,完全沒有做過分析和驗證。

作為精準科學之最的數學 —— 在弗雷格出生七年後去世的高斯稱數學為「眾科學學科的皇后」﹗—— 竟然連「數」是什麼也沒有人考究過和分析過,數學如何能夠被稱為一門「精準科學」﹖

數學的基礎是什麼亦沒有數學工作者探討過。

數學只不過是想當然地被視為一門精準科學,沒有經驗過理性的思考。

這是弗雷格的元數學﹑哲學和邏輯學的起點。

除了早期對幾何學略顯興趣之外,從公元1870年代中期開始,弗雷格終其一生以數學本身為他的研究對象。

他分析了數是什麼﹑設計了一套新的演繹語言﹑為算術建立了一個公理系統等﹔除此之外,他還分析了很多工具性概念,其中一個備受關注的就是函數的概念。

__________

41 所謂「元數學」是以數學為研究對象的學科。

待續

avatar-img
7會員
330內容數
我們這裡談兩個東西: 哲學和邏輯,以及與哲學和邏輯相關的東西。 首先開設的房間是《綁架愛麗絲 之 地下邏輯》。 隨後將陸續開設《綁架愛麗絲 之 鏡像語言》和《上古漢語的邏輯結構》。 聯絡作者﹕sen.wong@protonmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
sen的沙龍 的其他內容
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲  二 公元1829年,約翰‧狄利克雷 (Johann P
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 四 公元1887年,德國數學家理查德‧戴德金 (Ri
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲  二 公元1829年,約翰‧狄利克雷 (Johann P
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
在易理這個領域來說,始終都有有關於「數」的討論,而在各種理氣分析而言也隱隱的暗示其「數學性」,最顯著的可能是曆法與天文的計算對於易理哲學的影響與內在性。 那這種關係性究竟從何而來,或許可以從近代數學一窺端倪。
並得知根源還有虛數空間理論。
Thumbnail
Gottfried Wilhelm Leibniz (萊布尼茲) 是位德國的哲學家、數學家。他可以說是歷史上少見的通才,被譽為“十七世紀的亞里斯多德”。他的職業其實是位律師,據說還有男爵的貴族身份。
Thumbnail
孔子會不會數學? 說實在沒有人知道,但是從"禮、樂、射、御、書、數"六門學科來說,應該是有所涉獵才是,至於於多深入,這是未解之謎。不過應該可以推測他對數學可能也有所了解或關注。目前坊間有這類書籍談孔子與數學。 在古代,數學並不僅僅是今天我們所認知的數字、算術、幾何等概念,它也包括了天文、幾何、數
Thumbnail
邏輯是我們思考的基礎,影響著我們如何看待世界和進行推論。透過假設前提和推論,我們可以從邏輯的角度來思考生活中的各種情況和決策。深入瞭解邏輯可以幫助我們更清晰地思考,理解事物之間的關聯。
Thumbnail
  黑格爾(G. W. F. Hegel, 1770—1831)作為德國觀念論之集大成者,又被稱作最後的系統性哲學家。本書為黑個爾著作之選文集,本學期先閱讀了黑格爾三部前期著作,依序為:《精神現象學》(1806)、《哲學全書》之〈小邏輯〉(1817-1830)、及《大邏輯》(1831)。在黑
Thumbnail
講者:洪裕元(中央大學哲學研究所博士後研究員、比利時魯汶大學哲學博士) 時間:2021.7.10 1. 傳統現象學方法的困難:現象學的目標是回歸事物、現象本身,找到恰當的方法、語言表述現象,但用語言表述現象的傳統現象學方法會遇到困難。 2. 那托普(Paul Natorp, 1
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
在易理這個領域來說,始終都有有關於「數」的討論,而在各種理氣分析而言也隱隱的暗示其「數學性」,最顯著的可能是曆法與天文的計算對於易理哲學的影響與內在性。 那這種關係性究竟從何而來,或許可以從近代數學一窺端倪。
並得知根源還有虛數空間理論。
Thumbnail
Gottfried Wilhelm Leibniz (萊布尼茲) 是位德國的哲學家、數學家。他可以說是歷史上少見的通才,被譽為“十七世紀的亞里斯多德”。他的職業其實是位律師,據說還有男爵的貴族身份。
Thumbnail
孔子會不會數學? 說實在沒有人知道,但是從"禮、樂、射、御、書、數"六門學科來說,應該是有所涉獵才是,至於於多深入,這是未解之謎。不過應該可以推測他對數學可能也有所了解或關注。目前坊間有這類書籍談孔子與數學。 在古代,數學並不僅僅是今天我們所認知的數字、算術、幾何等概念,它也包括了天文、幾何、數
Thumbnail
邏輯是我們思考的基礎,影響著我們如何看待世界和進行推論。透過假設前提和推論,我們可以從邏輯的角度來思考生活中的各種情況和決策。深入瞭解邏輯可以幫助我們更清晰地思考,理解事物之間的關聯。
Thumbnail
  黑格爾(G. W. F. Hegel, 1770—1831)作為德國觀念論之集大成者,又被稱作最後的系統性哲學家。本書為黑個爾著作之選文集,本學期先閱讀了黑格爾三部前期著作,依序為:《精神現象學》(1806)、《哲學全書》之〈小邏輯〉(1817-1830)、及《大邏輯》(1831)。在黑
Thumbnail
講者:洪裕元(中央大學哲學研究所博士後研究員、比利時魯汶大學哲學博士) 時間:2021.7.10 1. 傳統現象學方法的困難:現象學的目標是回歸事物、現象本身,找到恰當的方法、語言表述現象,但用語言表述現象的傳統現象學方法會遇到困難。 2. 那托普(Paul Natorp, 1