Probabilistic Graphical Model 1.2節

更新於 發佈於 閱讀時間約 8 分鐘

以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。

1.2 Structured Probabilistic Models

既然要融入Uncertainty和Probability Theory,自然就會需要使用Random Variable來描述Value的不確定性,此外To reason probabilistically about the values of one or more of the variables, possibly given observations about some others,就會需要Joint Probability Distribution以及Posterior Distribution.


1.2.1 Probabilistic Graphical Models

當一個專業Domain需要用很多Random Variable描述時就會很棘手,因此This book describes the framework of probabilistic graphical models, which provides a mechanism for exploiting structure in complex distributions to describe them compactly, and in a way that allows them to be constructed and utilized effectively. Probabilistic graphical models use a graph-based representation as the basis for compactly encoding a complex distribution over a high-dimensional space. The nodes correspond to the variables in our domain, and the edges correspond to direct probabilistic interactions between them.


這本書會教你從Graph Representation出發來判斷機率分佈的Independencies以及從Graph的Skeleton來判斷Factorzation,因此:It turns out that these two perspectives — the graph as a representation of a set of independencies, and the graph as a skeleton for factorizing a distribution — are, in a deep sense, equivalent. The independence properties of the distribution are precisely what allow it to be represented compactly in a factorized form. Conversely, a particular factorization of the distribution guarantees that certain independencies hold.


此外這本書會介紹兩種Graph,分別是Bayesian Networks (Directed Graph)與Markov Networks (Undirected Graph),Both representations provide the duality of independencies and factorization, but they differ in the set of independencies they can encode and in the factorization of the distribution that they induce.


1.2.2 Representation, Inference, Learning

Graph Representation的好處是:Transparent, in that a human expert can understand and evaluate its semantics and properties. This property is important for constructing models that provide an accurate reflection of our understanding of a domain. Models that are opaque can easily give rise to unexplained, and even undesirable answers.


另一個好處是做Inference的時候比較快:This book provides algorithms for computing the posterior probability of some variables given evidence on others. These inference algorithms work directly on the graph structure and are generally orders of magnitude faster than manipulating the joint distribution explicitly.


第三個好處是:Probabilistic graphical models support a data-driven approach to model construction that is very effective in practice. The models produced by this process are usually much better reflections of the domain than models that are purely hand-constructed. Moreover, they can sometimes reveal surprising connections between variables and provide novel insights about a domain.


總結來說Probabilistic Graphical Model提供的好處乃是:These three components — representation, inference, and learning — are critical components in constructing an intelligent system. We need a declarative representation that is a reasonable encoding of our world model. We need to be able to use this representation effectively to answer a broad range of questions that are of interest. And we need to be able to acquire this distribution, combining expert knowledge and accumulated data. Probabilistic graphical models are one of a small handful of frameworks that support all three capabilities for a broad range of problems.

raw-image


avatar-img
179會員
475內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
整理了一些可以提供同為創作者的各位一個可以來參考的地方(⁠*⁠´⁠ω⁠`⁠*⁠)
Thumbnail
今天要介紹的《人生算法》也是中國的商業思維書籍,主要是講人生算法中三大要素:時間、空間、機率。幾個相互疊加,靠著思維工具,幫我們在生活中更好地做出決策。
Thumbnail
技術指標源自統計學原理,反映市場變化的概率分佈,而非預測工具。本文了解指標背後邏輯有利活學活用,甚至自行改良創新。
Thumbnail
在模擬自然界中的事物時導入隨機性,可以讓結果看起來比較自然,但如果導入的隨機性都是uniform distribution,那未免也太呆板了。這時候,我們需要nonuniform distribution亂數,來讓模擬出來的結果,更像真的一樣。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
整理了一些可以提供同為創作者的各位一個可以來參考的地方(⁠*⁠´⁠ω⁠`⁠*⁠)
Thumbnail
今天要介紹的《人生算法》也是中國的商業思維書籍,主要是講人生算法中三大要素:時間、空間、機率。幾個相互疊加,靠著思維工具,幫我們在生活中更好地做出決策。
Thumbnail
技術指標源自統計學原理,反映市場變化的概率分佈,而非預測工具。本文了解指標背後邏輯有利活學活用,甚至自行改良創新。
Thumbnail
在模擬自然界中的事物時導入隨機性,可以讓結果看起來比較自然,但如果導入的隨機性都是uniform distribution,那未免也太呆板了。這時候,我們需要nonuniform distribution亂數,來讓模擬出來的結果,更像真的一樣。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。