Probabilistic Graphical Model 2.1節 - Part 1

更新 發佈閱讀 1 分鐘

以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。

在第二章會介紹機率相關概念,這也是貫穿整本書的基礎。

2 Probability Theory

2.1 Motivation

2.1.1 Probability Distributions

一句話形容機率就是:Degree of confidence that an event of an uncertain nature will occur.

2.1.1.1 Event Spaces

raw-image


留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
244會員
951內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/05/12
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為「透過LoRA執行Fine Tuning」
2024/05/12
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為「透過LoRA執行Fine Tuning」
2024/05/03
工欲善其事,必先利其器,要打造屬於自己的Chat GPT之前,我們先學習怎麼建立Google免費提供的Colab環境,它可以免費使用GPU來加速AI的運算,非常適合沒有錢添購GPU,但又想學習前沿AI技術的人。 第一步:打開Google瀏覽器,並點選右上方的「方格子點點」,接著選擇「雲端硬碟」
2024/05/03
工欲善其事,必先利其器,要打造屬於自己的Chat GPT之前,我們先學習怎麼建立Google免費提供的Colab環境,它可以免費使用GPU來加速AI的運算,非常適合沒有錢添購GPU,但又想學習前沿AI技術的人。 第一步:打開Google瀏覽器,並點選右上方的「方格子點點」,接著選擇「雲端硬碟」
2024/04/26
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 在第二章會介紹機率相關概念,這也是貫穿整本書的基礎。 2.1.1.2 Probability Distributions
2024/04/26
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 在第二章會介紹機率相關概念,這也是貫穿整本書的基礎。 2.1.1.2 Probability Distributions
看更多
你可能也想看
Thumbnail
嶄新的台灣獨立調香師品牌Sunkronizo ,這個名稱源自希臘語「同步」的意思。讓香氛不單純只是氣味調製,更是個人風格的展現與靈魂意志延伸的一種溝通語言。 很適合接下來年底聖誕佳節送禮的試香組,以一星期中的日子來為全系列香氛產品命名, 是品牌創立後首個推出全系列概念作品...
Thumbnail
嶄新的台灣獨立調香師品牌Sunkronizo ,這個名稱源自希臘語「同步」的意思。讓香氛不單純只是氣味調製,更是個人風格的展現與靈魂意志延伸的一種溝通語言。 很適合接下來年底聖誕佳節送禮的試香組,以一星期中的日子來為全系列香氛產品命名, 是品牌創立後首個推出全系列概念作品...
Thumbnail
根據美國電影協會(MPA)主辦的「串流服務如何推動臺灣創意經濟」論壇內容,深入探討串流平臺對臺灣影視產業的影響、數據分析、政府政策建議、內容國際化策略,以及臺灣與「韓流」的差距。文章提出 awwrated 在串流生態系中的潛在角色,強調數據、策略與自信是臺灣影視產業發展的關鍵。
Thumbnail
根據美國電影協會(MPA)主辦的「串流服務如何推動臺灣創意經濟」論壇內容,深入探討串流平臺對臺灣影視產業的影響、數據分析、政府政策建議、內容國際化策略,以及臺灣與「韓流」的差距。文章提出 awwrated 在串流生態系中的潛在角色,強調數據、策略與自信是臺灣影視產業發展的關鍵。
Thumbnail
本文探討串流平臺(VOD)如何徹底改變好萊塢和臺灣影視產業的生態。從美國電影協會(MPA)的數據報告,揭示串流服務在臺灣的驚人普及率與在地內容的消費趨勢。文章分析國際作品如何透過在地化元素開拓新市場。同時,作者也擔憂政府過度監管可能扼殺臺灣影視創新自由,以越南為鑑,呼籲以開放態度擁抱串流時代的新機遇
Thumbnail
本文探討串流平臺(VOD)如何徹底改變好萊塢和臺灣影視產業的生態。從美國電影協會(MPA)的數據報告,揭示串流服務在臺灣的驚人普及率與在地內容的消費趨勢。文章分析國際作品如何透過在地化元素開拓新市場。同時,作者也擔憂政府過度監管可能扼殺臺灣影視創新自由,以越南為鑑,呼籲以開放態度擁抱串流時代的新機遇
Thumbnail
這一節的標題是0.4 A Normal Distribution of Random Numbers,介紹常態分布的基本概念,以及相關亂數產生器的使用方法與應用方式。
Thumbnail
這一節的標題是0.4 A Normal Distribution of Random Numbers,介紹常態分布的基本概念,以及相關亂數產生器的使用方法與應用方式。
Thumbnail
在模擬自然界中的事物時導入隨機性,可以讓結果看起來比較自然,但如果導入的隨機性都是uniform distribution,那未免也太呆板了。這時候,我們需要nonuniform distribution亂數,來讓模擬出來的結果,更像真的一樣。
Thumbnail
在模擬自然界中的事物時導入隨機性,可以讓結果看起來比較自然,但如果導入的隨機性都是uniform distribution,那未免也太呆板了。這時候,我們需要nonuniform distribution亂數,來讓模擬出來的結果,更像真的一樣。
Thumbnail
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
Thumbnail
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
這本書的起源來自於疫情期間,作者以數學家的角度,在網路上發表文章,幫大眾解讀疫情的統計數字是什麼意思,我看完這本書以後不禁感嘆,如果我更早理解這些概念就好了。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
解決電腦上遇到的問題、證明正確性、探討效率 並且很著重溝通,說服別人你做的事是正確且有效率的。 內容: 計算模型、資料結構介紹、演算法介紹、時間複雜度介紹。
Thumbnail
解決電腦上遇到的問題、證明正確性、探討效率 並且很著重溝通,說服別人你做的事是正確且有效率的。 內容: 計算模型、資料結構介紹、演算法介紹、時間複雜度介紹。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
Thumbnail
依照中央極限定理,我們可以得知(獨立且隨機樣本的)抽樣分布最終會形成常態分佈,那麼這件事情到底為什麼很重要呢? 這篇文章就來介紹一些常態分布的基本特性,以及最重要的──常態分布怎麼幫助我們計算機率。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News