我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。
image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
inputs = image_processor(list(video), return_tensors = "pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
image_processor() 函數將幀列表作為輸入,並傳回可用作 TimeSformer 模型輸入的張量 Dictionary,最後結果為:

















