AI徹底改變大學理工教育的面貌─學習的本質(18)

更新於 發佈於 閱讀時間約 8 分鐘
作者:陳華夫
1980年代我留學美國麻省理工學院(MIT),校園裡最熱門的理工課程是固態物理學數位信號處理學,學生們要交習題,必須憑著學生證領取一台示波器在電子實驗室裡挑燈夜戰。
史坦福大學的校園裡最熱門的是人工智慧(AI)課程─機器學習深度學習。學生不再熱衷電動力學量子力學等需要高等數學基礎的物理科學,而轉向修習只需基本微積分及機率學就可上手的機器學習,這是因為畢業後的就業前景良好。目前,百度宣佈了推出聊天機器人文心一言(ERNIE Bot),谷歌(Google)決定推出聊天機器人Bard。而微軟(Microsoft)為大股東的OpenAI更是ChatGPT的開發者。這些AI的大公司都以高薪延攬深度學習的程式設計師。
這種40年來理工教育面貌的徹底改變,對大學、教授、及學生的意義重大,以下仔細分析:
1)「名校」及「名師」光環之隕落:
1980年代的熱門的量子力學相對論都是艱深的物理理論,學生不僅需要二次偏微分程式的高等數學基礎,還要具備一定的理解能力。例如,諾獎得主理察·費曼教授寫了三卷本的《費曼物理學講義》在名校加州理工學院的大班教室,授課量子力學相對論。學生要想親炙「名校」大師教授的教誨,就得拼命擠進「名校」。
但如今,臺灣的AI學生不必遠渡重洋,擠進美國的「名校」。因為機器學習深度學習的教學視頻都在youtube上免費可得,並且講的是中文。並且谷歌開發了Python平台─google colab─能取代Linux作業系統平台,做習題、交作業在宿舍或家裡,一台筆電在Win10系統下就搞定了。
甚且,學習AI若有理論或程式上的問題,只要上網搜尋,大部份都會得到解答,也就是說,「上網搜尋」已取代了「名師」的功能。因為深度學習發展得極為快速,「名師」及學生都得不斷的「上網搜尋」最新的知識。
2)學習深度學習的門檻較學習量子力學為低:
學生理解不了艱深的量子力學是因為它是在推演抽象概念,但抽象概念理解困難的情況下,學習專注力都持續不了多久,最終放棄。而深度學習中的人工神經網絡CNNRNNE-GANTransformers)原本也是抽象難懂的概念,經過Python程式的生成及操作它們,而變為具體的印象,而可理解、可記憶、及可學習。(見拙文AI幫助人們改善記憶、思考能力─適用於年輕與銀髮人─學習的本質(17),及模擬腦損傷
於是,原本視物理數學為畏途的理工學生,可以改學AI,但必須要跑Python程式,把人工神經網絡抽象概念變為具體的印象,否則,AI仍難理解學習就可能半途而廢。
3)學習人工神經網絡有助於人類腦神經記憶網絡的學習:
在人腦腦神經記憶網絡中, 神經元樹突(dendrites)與其他神經元突觸(synapse)相連結。典型的神經元通過稱為軸突(axon)的大量神經元結構從其他神經元收集信號。 神經元通過稱為軸突的細長鏈發出「電活動尖峰(spike)」─即動作電位(action potential),軸突分裂成數千個分支。 在每個分支的末端的結構是突觸(synapse),它的功能是將來自軸突的電信號(如腦波)轉化為「抑制」或「激發」的電信號。
當一個神經元接收到與其「抑制性」輸入相比足夠大的「興奮性」輸入的電信號時,它會沿著軸突(axon)發送「電活動尖峰(spike)」。學習即是改變軸突末端的突觸之腦波傳導的效能,於是一個神經元就會影響另一個神經元。(見拙文什麼是「記憶」?如何「記憶」?「記憶」的本質?─學習的本質(3)
深度學習之父」的傑佛瑞·辛頓在其科普文章〈人工神經網絡如何從經驗中學習〉中,模擬人類的腦神經記憶網絡而建立了人工神經網絡,它們是由相互連接的單元組成,這些單元模擬神經元單元之間的連線模擬軸突,而可修改的權重(weight)模擬突觸─它將神經元的「電輸出」轉換為其活動強度的大小。每個單元將其活動輸出以適當的權重轉換、並廣播給其他單元
(圖:「人工神經網絡」模擬人類腦神經記憶網絡,圖片來源:人工神經網絡如何從經驗中學習
最常見的人工神經網絡類型由三組或三層單元組成:「輸入單元層」連接到「隱藏 單元層」,「隱藏單元層」連接到「輸出單元層」。輸入單元的活動表示輸入網絡的原始信息。而每個隱藏單元的活動由輸入單元的活動以及輸入單元和隱藏單元之間的連接權重決定,而輸出單元也類似地由隱藏單元與輸出單元間的權重所決定,如下圖:
(圖:「通用人工神經網絡」,圖片來源:人工神經網絡如何從經驗中學習
初看起來幼稚簡單的人工神經網絡,最終發展成當今高度複雜的CNN及RNN,以發展語音辨識、圖形辨識、及聊天機器人(如ChatGPT)等高級應用。
既然人工神經網絡是模擬人類腦神經記憶網絡的構造,它也就可以提供人類腦神經記憶網絡運作之寶貴資料,例如有位腦損傷的成年人,在閱讀單詞時會犯一些奇怪的錯誤。於是,我們先訓練一個「閱讀人工神經網絡」,再某種程度的損壞此「閱讀人工神經網絡」,讓它複製這些「奇怪的錯誤」。而進一步發現,「深度閱讀障礙」患者保留了「語義路線」─即通過語義途徑大聲朗讀單詞的發音完全來自意義。(見模擬腦損傷
4)AI機器學習與物理科學的比較:
長久以來,科學家如牛頓、愛因斯坦等從外界的現實,發現自然界的規律,用高等數學的語言─如二次偏微分方程式張量分析等─寫成量子力學相對論,再應用到:火箭、衛星、電動汽車、核電廠、電腦、雲端計算、GPU、TPU等,如下圖:
(圖:機器學習與物理科學的比較,圖片來源:陳華夫製作)
人工智慧(AI)顛覆了這個人類學習範式(典範),它基本上是以深度學習取代科學家,從數據(data)學習出人工神經網絡(如CNNRNNE-GANTransformers)。(見人工智能:什麼是人工智能 (AI)?人工智能如何工作?
然後再應用到:圖像識別、語音識別、機器翻譯、自動駕駛、Alphago-Zero電腦圍棋、ChatGPT聊天機器人等領域。
從AI學生及程式設計師的觀點,可以避免學習艱深的高等數學,取而代之的是以Python程式的生成及操作複雜的人工神經網絡 CNN及RNN。但在圖神經網絡 (GNN)中,需要「時域」或「空間域」的傅立葉轉換有限脈衝響應(FIR)的數位率波器等,還是得學習複雜的數位信號處理學。另外艱深的馬爾可夫決策過程( MDP ) 通過動態規劃解決的優化問題強化學習很有用。換句話說,深度學習某種程度上仍逃脫不了艱深的數學。(請看拙文人工智慧的「強化學習」與人類學習的優劣─學習的本質(12),及《機器學習數學》馬克·戴森羅斯,A.·費薩爾,鄭順翁(2021))
科學家只用思考就能激發出新理論,但2012年後,深度學習的飛躍進展得歸功於適當的數據庫(XGBoost 及Keras)和硬件(GPU及TPU)。(見《用 Python 的深度學習》FRANÇOIS CHOLLET(2018))
結論:
人類學習即是改變腦神經記憶網絡中,軸突末端的突觸之腦波傳導的效能。學習AI的人工神經網絡,一定要用Python程式把抽象概念轉變為具體的印象,才有利於理解,不致於半途而廢。
請看「陳華夫專欄」─學習的本質─系列文章:

「思考是有意識的系列回憶」理論開啟了思想史革命─學習的本質(1)
什麼是「思考」?如何「洞識」?何謂「思想家」?─學習的本質(2)
什麼是「記憶」?如何「記憶」?「記憶」的本質?─學習的本質(3)
學習的真相與反思─學習的本質(4)
「施捨」就是人生的「現代開悟」─學習的本質(5)
談「恐懼」─學習的本質(6)
探究華人的「罪惡感」?─學習的本質(7)
你孤獨了嗎?─學習的本質(8)
人腦如何創新思考?─學習的本質(9)
「現代開悟」的本質及釋義─學習的本質(10)
你「現代開悟」了嗎?─學習的本質(11)
人工智慧的「強化學習」與人類學習的優劣─學習的本質(12)

伽馬波(40赫茲)、記憶、失智症、及音樂治療(2023年版)─學習的本質(13)
省思物理科學教育的真相─學習的本質(14)
類智慧真正優於AI電腦圍棋之處為何?─學習的本質(15)
細述我親歷40年的學習之旅─學習的本質(16)
AI幫助人們改善記憶、思考能力─適用於年輕與銀髮人─學習的本質(17)
AI徹底改變大學理工教育的面貌─學習的本質(18)
AI模擬人類學習真能比人類更創新嗎?─學習的本質(19)
AI深度學習與《易經》的學習真有差異嗎?─學習的本質(20)
AI之ChatGPT的繪畫審美能力賞析─學習的本質(21)
請看懂智慧的本質:GPT-4的「人工通用智能」(AGI)落後人類有多遠?─學習的本質(22)
臺灣許皓鋐圍棋亞運金牌在學習圍棋上的意義─學習的本質(23)
論才華、機運、及成功─學習的本質(24)
為什麼會看到廣告
avatar-img
476會員
249內容數
思想家─理解、解釋、預測世界。發表:9篇「深度政經分析」、6篇「現代開悟之洞識」、10篇「學習的本質」、13篇「美中關係」、4篇「驀然回首」、21篇「文學與藝術」、36篇「科技與智慧」、9篇「圍棋的本質」、40篇「美中經濟」、28篇「美股的本質」、12篇「美聯儲的本質」、12篇「貨幣及美元的本質」,共201篇。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
「ZenGo 7」不鑽研棋理,一直使用騙著,欺負對手,棋力不得長進。對手棋力增加,而識破騙著,就挨打認輸,實在是不可取的「魯蛇」(loser,失敗者)的人生哲學,希望天下的圍棋棋手引以為戒。我計畫改進目前世界上最強的開源電腦圍棋軟體之「Katrain 9段」,成為超級「Katrain 9段」。
作者:陳華夫 「思考是有意識的系列回憶」的說法啟了人類思想史的革命。思考能力的洞識是人類最珍貴的創造力,古今的偉大的思想家都因為它們非凡的洞識,而點亮了人類的文明。
作者:陳華夫 學習新知識的角度來看,人腦把輸入的資訊中的基模(故事),進行編碼─即摒棄基模(故事)的內容,只抽取其敘事之結構(關係),而成為抽象的概念,再把概念互相關係到腦神經記憶網絡中已有的概念,於是成功的擴充它。
從圍棋棋理及我的「現代流第5原則」來看,來襲的小馬步掛,是在低位,違反「走在外面原則」,所以,可以「肩沖」應付,這是革命性的、有效的痛擊來襲的「小馬步掛」。
「定石」是在棋盤的角部及其周邊,黑、白局部子力在1比1,或頂多1比2的情況下,局部子力平衡的攻防走法。電腦圍棋(如AlphaGo、ZenGo等)不會給人類施展「定石」的機會。要獵殺ZenGo 九段,得靠它不懂的、更高明的「現代流第5原則─埋伏餘味」。
作者:陳華夫 我寫了世界圍棋冠軍賽應該允許三次回手(悔棋)及我配合的免費「現代流」圍棋教育─圍棋的本質(4),下場只有一個慘字可以形容─千夫所指,觸犯眾怒。允許「悔祺」雖然毀了競技的刺激,但卻可把「圍棋」變成學習思考「智慧」的賽局,這就更本改變了圍棋的本質,是圍棋史上的革命。
「ZenGo 7」不鑽研棋理,一直使用騙著,欺負對手,棋力不得長進。對手棋力增加,而識破騙著,就挨打認輸,實在是不可取的「魯蛇」(loser,失敗者)的人生哲學,希望天下的圍棋棋手引以為戒。我計畫改進目前世界上最強的開源電腦圍棋軟體之「Katrain 9段」,成為超級「Katrain 9段」。
作者:陳華夫 「思考是有意識的系列回憶」的說法啟了人類思想史的革命。思考能力的洞識是人類最珍貴的創造力,古今的偉大的思想家都因為它們非凡的洞識,而點亮了人類的文明。
作者:陳華夫 學習新知識的角度來看,人腦把輸入的資訊中的基模(故事),進行編碼─即摒棄基模(故事)的內容,只抽取其敘事之結構(關係),而成為抽象的概念,再把概念互相關係到腦神經記憶網絡中已有的概念,於是成功的擴充它。
從圍棋棋理及我的「現代流第5原則」來看,來襲的小馬步掛,是在低位,違反「走在外面原則」,所以,可以「肩沖」應付,這是革命性的、有效的痛擊來襲的「小馬步掛」。
「定石」是在棋盤的角部及其周邊,黑、白局部子力在1比1,或頂多1比2的情況下,局部子力平衡的攻防走法。電腦圍棋(如AlphaGo、ZenGo等)不會給人類施展「定石」的機會。要獵殺ZenGo 九段,得靠它不懂的、更高明的「現代流第5原則─埋伏餘味」。
作者:陳華夫 我寫了世界圍棋冠軍賽應該允許三次回手(悔棋)及我配合的免費「現代流」圍棋教育─圍棋的本質(4),下場只有一個慘字可以形容─千夫所指,觸犯眾怒。允許「悔祺」雖然毀了競技的刺激,但卻可把「圍棋」變成學習思考「智慧」的賽局,這就更本改變了圍棋的本質,是圍棋史上的革命。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
均一AI實驗室研發了「AI狐貍貓」和「Jutor英語家教」等教育AI產品,並在暑假舉辦了AI研習課程,包括體驗Rai學習嚮導、製作小工具及客製化chatbot。課程中,老師們學習如何創建AI工具,並獲得了積極的回饋。這次活動展示了AI如何提升教學效果,並鼓勵教師們探索更創新的教學方法。
Thumbnail
本文討論了AI產業發展趨勢及對文理組學生所帶來的影響。對於未來就業方向的建議,文理組學生都可以從中獲得一些建議和啟發。文章最後也提到相對於AI的邏輯理性。善於說故事的個人品牌將在未來興起。欲瞭解更多內容,歡迎關注本文。
Thumbnail
AI工具導入會是第四次工業革命的開始,對日後的工作機會和型態產生根本性的變化,本文分成3大部分各別討論: (1)文科生將再次迎來出頭天;(2)理工科學生工作機會將大幅減少;(3)一人公司數量將爆發性成長。
Thumbnail
0. 剛發現台灣人工智慧學校侯秘書長是強者我同學夫人,他在聯發科搞AI,買股票找誰大家應該知道。 1. 推動AI融入課程(尤其在人社領域)最大的困難和挑戰在於心態mindset的轉變,要由‘人機(二元)對立’換成‘人機協作’。 2. 絕大部分教學現場的問題來自於1.,比如質疑AI會取代人、著
Thumbnail
2022年末,ChatGPT為AI打開了一個新的篇章,然而大家知道普遍被認為的AI元年是哪一年嗎?1956年達特茅斯會議首次提出了artificial intelligence,AI這個名稱因而誕生,這年被定為AI元年,也就是說AI這項科技在眾多科學家前仆後繼的努力之下已經走了超過半個世紀。
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
最近打算跟著 李宏毅老師上傳至 Youtube 上的課程【生成式AI導論 2024】來做學習,算是邊做個記錄~
〉〉清華大學AI融入人文社會領域 昨天看到朋友轉分享一則新聞《清大結合生成式AI融入人社領域教學 協助分析史料助學習》,從文中可以看出,老師把ChatGPT當作一項工作,協助文言文斷句、編劇...等,課程有兩個重點,「如何問問題?」,第二則是「如何甄別AI給的答案?」 李卓穎院長說,研究歷史的學
Thumbnail
生成式 AI 讓人們驚艷,也開始認真思考:生成式 AI 會對教育培訓帶來什麼樣的衝擊?AI 會取代老師嗎?如何運用生成式 AI 來加速學習?企業如何運用生成式 AI 來加速創新? 但也開始懷疑 — 人類的工作是不是真的要被 AI 取代了?.....
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
均一AI實驗室研發了「AI狐貍貓」和「Jutor英語家教」等教育AI產品,並在暑假舉辦了AI研習課程,包括體驗Rai學習嚮導、製作小工具及客製化chatbot。課程中,老師們學習如何創建AI工具,並獲得了積極的回饋。這次活動展示了AI如何提升教學效果,並鼓勵教師們探索更創新的教學方法。
Thumbnail
本文討論了AI產業發展趨勢及對文理組學生所帶來的影響。對於未來就業方向的建議,文理組學生都可以從中獲得一些建議和啟發。文章最後也提到相對於AI的邏輯理性。善於說故事的個人品牌將在未來興起。欲瞭解更多內容,歡迎關注本文。
Thumbnail
AI工具導入會是第四次工業革命的開始,對日後的工作機會和型態產生根本性的變化,本文分成3大部分各別討論: (1)文科生將再次迎來出頭天;(2)理工科學生工作機會將大幅減少;(3)一人公司數量將爆發性成長。
Thumbnail
0. 剛發現台灣人工智慧學校侯秘書長是強者我同學夫人,他在聯發科搞AI,買股票找誰大家應該知道。 1. 推動AI融入課程(尤其在人社領域)最大的困難和挑戰在於心態mindset的轉變,要由‘人機(二元)對立’換成‘人機協作’。 2. 絕大部分教學現場的問題來自於1.,比如質疑AI會取代人、著
Thumbnail
2022年末,ChatGPT為AI打開了一個新的篇章,然而大家知道普遍被認為的AI元年是哪一年嗎?1956年達特茅斯會議首次提出了artificial intelligence,AI這個名稱因而誕生,這年被定為AI元年,也就是說AI這項科技在眾多科學家前仆後繼的努力之下已經走了超過半個世紀。
30年後來看現在,或許會覺得,還好現在有AI,才讓人類進入真正的文明世紀。 GPT只是大型語言模型(LLM)的一種,大型語言模型只是人工智慧(AI)的一種,而人工智慧甚至可以說只是「量子技術」的一種。 AI除了用來聊天(就像一開始我們只是把電腦當打字機),最重要的功能是幫助我們更容易理解和運用量
Thumbnail
最近打算跟著 李宏毅老師上傳至 Youtube 上的課程【生成式AI導論 2024】來做學習,算是邊做個記錄~
〉〉清華大學AI融入人文社會領域 昨天看到朋友轉分享一則新聞《清大結合生成式AI融入人社領域教學 協助分析史料助學習》,從文中可以看出,老師把ChatGPT當作一項工作,協助文言文斷句、編劇...等,課程有兩個重點,「如何問問題?」,第二則是「如何甄別AI給的答案?」 李卓穎院長說,研究歷史的學
Thumbnail
生成式 AI 讓人們驚艷,也開始認真思考:生成式 AI 會對教育培訓帶來什麼樣的衝擊?AI 會取代老師嗎?如何運用生成式 AI 來加速學習?企業如何運用生成式 AI 來加速創新? 但也開始懷疑 — 人類的工作是不是真的要被 AI 取代了?.....