2023-05-22|閱讀時間 ‧ 約 4 分鐘

Mplus常用的估計法簡介

在使用Mplus進行統計分析時,我們需要設定各種估計方法,但很多同學可能不知道各種估計方法的適用時機,本文將簡介各種常見的估計法。
From:DALL·E 2
From:DALL·E 2

下圖是Mplus常見的估計方法,當在Mplus中進行結構方程模型(SEM)和確認性因素分析(CFA)等分析方法時,需要設定相應的估計方法
雖然提供很多種方法,其實用到最後,發現常見估計方法就MLR,其它就很少見到了:
1.Maximum Likelihood (ML)
  • 使用最大概似法進行參數估計和模型配適。
  • 許多統計軟體的默認估計方法
  • 數據若非多元正態分佈,容易造成研究結果產生誤差。
  • 經典但最近少用了...
2.Weight Least Square with Mean and Variance(WLSMV):
  • 適用於處理類別數據
  • 對於非常態有一定程度穩健性(robust)
  • 計算Chi-Square Difference Testing 時不能直接減,要用mplus 提供的語法
  • 其處理遺漏值採用 pairwise present,這不是遺漏值現代解決辦法
  • 當中介是二元時,不推薦使用 ML或 MLR來產生間接影響,而應該使用 WLSMV (來源)。
3.Maximum Likelihood Estimation with Robust Standard Errors (MLR):
-MLR parameter estimates are the same as ML and ML using bootstrap -Bootstrap influences only SEs -both bootstrap and MLR improve the SEs compared to ML SEs when outliers are present -Outliers are not defined/developed with bootstrap
分享至
成為作者繼續創作的動力吧!
© 2024 vocus All rights reserved.